YEAR 11 GENERAL MATHEMATICS 2014 - MATRICES TEST

Name:									
Skills	/25	Analysis	/15	TOTAL: /	/40	45 mins			
SECTION A: Multiple Choice				(10 x 1 marks = 10 marks)					
Questions 1-6 are to be answered using the following matrices:									
$V = \left[\begin{array}{c} \\ \end{array} ight]$	2 5 3 6 4 7	$I = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	$X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	$Y = \begin{bmatrix} 3 & -1 \\ -6 & 4 \end{bmatrix}$	$Z = \begin{bmatrix} -4 & 0\\ -4 & -8 \end{bmatrix}$			
1. Which matrix has an order of (2×3)?									
A. <i>V</i>		B. /		C. <i>X</i>	D. <i>Y</i>	E. <i>Z</i>			
2. Which	h stater	ment about mat	rix / is fa	lse?					
A. / is an	/ is an identity matrix			B. $I \times Y = Y$	C. <i>I</i> is a square matrix				
D. <i>I</i> × <i>Y</i> =	W		E. The	order of / is (2×2)					
3. -2 <i>Z</i> is	equal t	0:							
A. $\begin{bmatrix} -8 \\ -8 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -16 \end{bmatrix}$	B. $\begin{bmatrix} 16 & 0\\ 16 & 6 \end{bmatrix}$) 4]	c. $\begin{bmatrix} 8 & 0 \\ 8 & 16 \end{bmatrix}$	D. $\begin{bmatrix} -6 & 2 \\ 12 & -8 \end{bmatrix}$	E. Undefined			
4. Which matrix product exists?									
A. //		B. XZ		C. <i>YV</i>	D. <i>XY</i>	E. <i>VX</i>			
5. <i>Y</i> + <i>Z</i> :	=								
A. $\begin{bmatrix} -1 \\ -10 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -4 \end{bmatrix}$	B. $\begin{bmatrix} -8 \\ 8 \end{bmatrix}_{-}$	8 -32	c. $\begin{bmatrix} -12 & 4 \\ 36 & -28 \end{bmatrix}$	D. $\begin{bmatrix} -1 & -1 \\ -2 & -4 \end{bmatrix}$	E. $\begin{bmatrix} 7 & -1 \\ -2 & 12 \end{bmatrix}$			
6. The <i>det(Y)</i> is equal to:									
A. $^{1}/_{6}$		B. 6		C. 18	d. $^{1}/_{18}$	E. -6			

7.	If $AX = B$, then X can be given by:							
Α.	AB-1	B. <i>BA</i> ⁻¹	c. B/A		D. <i>A</i> ⁻¹ <i>B</i>	E. <i>IA</i> -1		
8.	8. $S = \begin{bmatrix} 6 & -3 \\ 2 & 0 \end{bmatrix}$ is a singular matrix because:							
Α.	It is a square mat	rix		В.	S _{2,2}			
C.	Its number of rows = number of columns				D. Its identity matrix cannot be found			
Ε.	<i>det(S)</i> = 0							
9.	$\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ generates the following pairs of simultaneous equations:							

3x + y = 4

- A. x + y = 1
x + 3y = 4 B. 2x = 1
x + 3y = 4

 C. x + 4y = 0 D. x = 1
- x + 3y = 4
- **E.** x + y = 13x + y = 4

_

10. The linear equations x - 5y = 4 and -2x + y = 3 can be written in matrix form as:

A. $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ B. $\begin{bmatrix} 1 & -5 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ C. $\begin{bmatrix} -5 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ E. $\begin{bmatrix} 1 & -5 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$

SECTION B: Short Answer (20 marks)

1. $X = \begin{bmatrix} 2 & 3 & -5 \end{bmatrix}$ and $Y = \begin{bmatrix} 11 & 3 & 1 \\ 9 & 1 & 3 \\ 5 & 3 & 6 \end{bmatrix}$

- a) The order of matrix X is ______ (1 mark)
- b) The order of matrix Y is ______(1 mark)
- c) The order of matrix XY will be ______ (1 mark)

d) Calculate matrix XY and show your workings. (2 marks)

2. Given that
$$L = \begin{bmatrix} 8 & -2 \\ 9 & 4 \end{bmatrix}$$
 $M = \begin{bmatrix} 2 & 8 \\ 8 & -9 \end{bmatrix}$ $N = \begin{bmatrix} 1 & 9 \\ -2 & -3 \end{bmatrix}$
a) $L + N =$ (1 mark) b) $M - N =$ (1 mark)
c) $3L =$ (1 mark) d) $2N - 4M =$ (1 mark)
3. If $\begin{bmatrix} -11 & 3 \\ 8 & -6 \end{bmatrix} + \begin{bmatrix} a & b \\ -10 & 2 \end{bmatrix} = \begin{bmatrix} -5 & -4 \\ c & -4 \end{bmatrix}$ then
a) $a =$ b) $b =$ c) $c =$

- **4.** $T = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}$
 - **a) i.** Find *det*(*T*): (1 mark) **ii.** T⁻¹ =

(1 mark)

- **b)** State the name of the matrix produced when *T* is multiplied by its inverse. (1 mark)
- 5. The following system of linear equations need to be solved using matrix methods:

$$\begin{aligned} x + 2y &= -4\\ 3x - 2y &= 12 \end{aligned}$$

a) Write the two equations in matrix form. (2 marks)

- **b)** The solution is given by the equation $X = A^{-1}C$. Label your matrices accordingly. (1 mark)
- c) $A^{-1} =$ (1 mark)
- d) Find X. (1 mark)

SECTION C: Analysis (15 marks)

Four peaches and 12 nectarines cost \$2.28. At the same shop, two peaches and 14 nectarines cost \$2.10. Using matrix methods, find the cost of each piece of fruit. (5 marks)

2. For three seasons each year, a travel agent accommodates a certain number of people in four different tours: Tours A, B, C and D. This is shown as matrix *S* below. The cost (\$) per tour, and the number of brochures printed for each person's information pack per tour, is shown below as matrix *T*.

		Tour	Tour	Tour	Tour			\$	brochure
	Autumn	A 50	B 65	С 45	D 30		Tour A	250	3
	Autumn	50	05	45	50		Tour B	315	5
S =	Spring	60	70	50	30	T =	Tour C	380	6
	Summer	55	85	70	40		Tour D	420	8

- a) How many people are accommodated for in Spring for Tour D? (1 mark)
- b) In which season do most people travel? (1 mark)

Matrices Test Year 11 General Maths 2014

- c) How many brochures are given in Tour B? (1 mark)
- d) Find matrix ST and label its rows and columns (3 marks)

- e) What was the total cost for Spring? (1 mark)
- f) How many brochures were printed in Autumn? (1 mark)
- g) State the value of $ST_{2,2}$ and explain what it represents. (2 marks)