Student Name		
Teacher (circle one)	JOR	CWE
Homegroup		

MATHEMATICAL METHODS (CAS) UNIT 1

EXAMINATION 1

Thursday, 4th June, 2015

Reading Time: 5 minutes Writing time: 1 hour

Instructions to students

This exam consists of **13** questions.

All questions should be answered in the spaces provided.

There is a total of 61 marks available.

A decimal approximation will not be accepted if an exact answer is required. Where more than one mark is allocated to a question working must be shown. Students may not bring any notes or any calculators into this exam. Diagrams in this exam are not to scale except where otherwise stated.

FORMULAS

Function and Graphs

Distance formula
$$d_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Μ

lidpoint formula
$$x_M$$
, $y_M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Straight line graphs

General equation

y = mx + c

Gradient n

$$n = \frac{y_2 - y_1}{x_2 - x_1}$$

Equation through point (x_1, y_1) given by $y - y_1 = m(x - x_1)$

Difference/sum of squares and cubes	Expansions
$a^2 - b^2 = (a+b)(a-b)$	$(a+b)^2 = a^2 + 2ab + b^2$
$a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$	$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

(a)	$3x^3 + 81 = 0$	(b)	$\frac{1}{x+2} = \frac{2}{6x-5}$

2 + 3 = 5 marks

2 Use the factor theorem and division to factorise $W(x) = x^3 - 5x^2 - 2x + 24$

5 marks

3 Let $f(x) = -3x^4 + 2x^2 - 3$

Evaluate: i) f(-1)

ii) $f(\sqrt{2})$

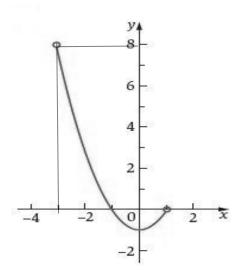
4 Expand

(a)	(2x-1)(x+1)(1-x)	(b)	$(3x+2)^3$

2 + 2 = 4 marks

5 Factorise the following completely

$4x^2 + 2x - 2$	$3x^3y - 12xy^3$	$x^{3}-8$	


 $3 \times 2 = 6 \text{ marks}$

6 Simplify this expression using appropriate logarithm or index laws

a)
$$\frac{25^{x+3} \times 5^{6x}}{125^{2x-1}}$$

b) $3\log_3 18 + \log_3 2 - 2\log_3 12$

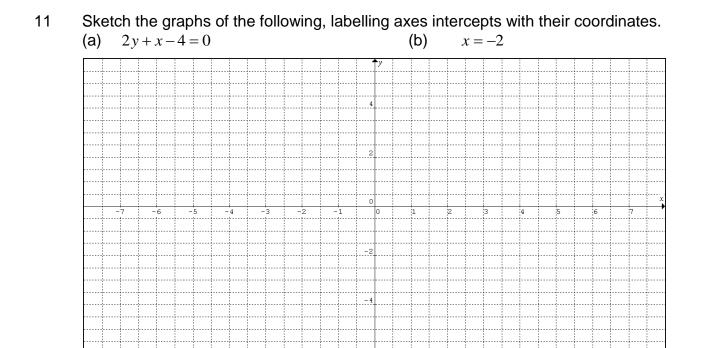
7 State the domain and range of this graph

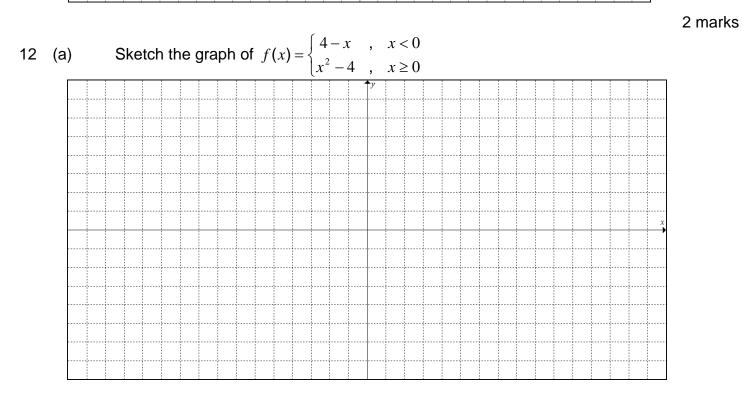
2 marks

8 For the function $f: D \to R$, $f(x) = 2(x-2)^2 + 3$ find *D*, the largest domain for which the function is 1: 1

2 marks

9 List all the transformations that have been applied to the graph of $y = x^2$ to transform it into the graph of $y = \frac{1}{2}(x+4)^2 + 1$

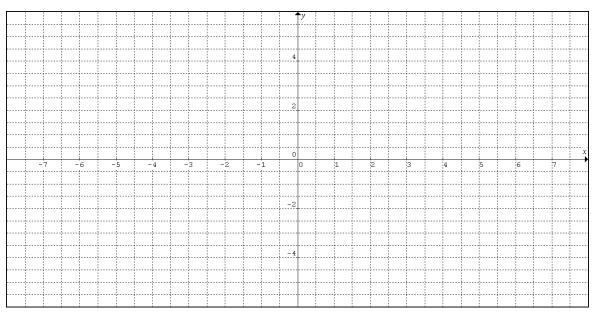

10 Consider the points: A (5,-1) and B (1,3)


(a) Find the distance from *A* to *B*. Express your answer in simplest surd form.

(b) Find the midpoint of the line segment AB

(c) Show that the point A(5,-1) lies on the line with equation y = 2x - 11.

(d) Find the equation of the line that passes through the point A(5,-1) and is perpendicular to the line y = 2x-11. Leave your answer in the form ay+bx+c=0



- (b) What is the domain and range of f(x)?
- (c) Find the value of f(3).
- (d) Is f(x) a function or a relation? Give reasons

- 13 Consider the curve with equation. $y = \frac{1}{x-3} 4$
 - (a) State the equations of the asymptotes.
 - (b) What are the coordinates of any axes intercepts?

(c) Sketch the curve. Label all axes intercepts with their co-ordinates and asymptotes with their equations.

2 + 4 + 3= 9 marks