Student Name	SOLUTIONS		
Teacher (circle one)	JOR	CWE	
Homegroup			

MATHEMATICAL METHODS (CAS) UNIT 1 EXAMINATION 2

Wednesday, 3th June, 2015

Reading Time: 9.00 - 9.15 (15 minutes) Writing time: 9.15 - 10.45 (90 minutes)

Instructions to students

This exam consists of Section 1 and Section 2.

Section 1 consists of **12** multiple-choice questions, to be answered on the separate answer sheet. It is worth **12** marks.

Section 2 consists of **12** extended-answer questions that should be answered in the spaces provided. It is worth **77** marks

There is a total of 89 marks available.

All questions in Section 1 and Section 2 should be answered.

Unless otherwise stated, diagrams in this exam are not drawn to scale.

Where more than one mark is allocated to a question, appropriate working must be shown.

Where an exact answer is required to a question, a decimal approximation will not be accepted.

Students may bring one bound reference into the exam.

Students may bring an approved CAS calculator.

Section 1: Multiple Choice: Choose the best answer and write in the box shown. (12 marks)

1	B
2	В
3	D
4	A
5	\mathcal{D}
6	E
7	B
8	C
9	E
10	MC
11	DorA!
12	E

Student Name:	SOLUTIONS	Home Group:	
Teacher (circle):	Ms O'Rielly	Ms Webb	

SECTION 1: MULTIPLE-CHOICE QUESTIONS

Which of the following relations are 1 functions?

I
$$(x-2)^2 + (y+1)^2 = 16 \times$$

II
$$y^2 = \frac{2}{3}x - 1 \quad \chi$$

III
$$v = -2x + 4$$

IV
$$y = 4x^2$$

- I and III
- III and IV
- I and II
- II and III
- I and IV
- 2 If $f(x) = 2 + \frac{3}{x}$ then the value of
 - $f(3) = 2 + \frac{3}{3}$
 - A.
- $\frac{1}{2}$ C.
- $f(6) = 2 + \frac{3}{6}$ $= 2 + \frac{3}{2}$
- D.

E.

- f(3)-f(6) = 3-22

- The expansion of $(x-3)^3(x+2)$ is 3 given by CAS
 - $x^2 + x 12$
 - $x^3 2x^2 15x + 36$
 - $x^4 + 4x^3 27x 54$
 - $x^4 7x^3 + 9x^2 + 27x 54$ $x^4 - 5x^3 - 9x^2 + 81x - 108$
- 4 The graph of the parabola with equation $y = -(x + 3)^2 - 2$ has a turning point with coordinates
 - (-3, -2)
 - (-3, 2)В
 - C (3, -2)
 - (9, -2)D
 - Ε (3, 2)

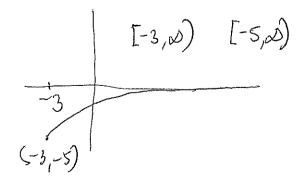
- The equation 3x + 2y 2 = 0 has 5 gradient and y-intercept respectively equal to:

 - -2, 4

- 6 The variables a and b are related by the formula $a = \frac{4b}{b-1}$.

Rearrangement of the formula shows that b is equal to:

- 4*a* Α a+4
- В a+4
- a + 4C а
- 4*a* D
- 7 A function has rule $f(x) = \sqrt{x+3} - 5$. The (implied) domain and range are:
 - Α domain: [3, ∞); range: [-5, ∞)
 - B/ domain: [-3, ∞); range: [-5, ∞)
 - C domain: (3, ∞); range: (-5, ∞)
 - D domain: (- 3, ∞); range: (- 5, ∞)
 - Ε domain: [-3, ∞); range: R



$$g(x) = \frac{2}{1+3x}$$
 are respectively:

A
$$R \setminus \left\{-\frac{3}{2}\right\}$$
 and $R \setminus \{0\}$

B
$$R \setminus \left\{-\frac{2}{3}\right\}$$
 and $R \setminus \{4\}$

$$\mathbb{C}$$
 $\mathbb{R}\setminus\left\{-\frac{1}{3}\right\}$ and $\mathbb{R}\setminus\{0\}$

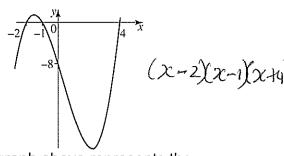
D
$$R \setminus \left\{-\frac{2}{3}\right\}$$
 and $R \setminus \{0\}$

$$E \qquad R \setminus \left\{ \frac{2}{3} \right\} \text{ and } R \setminus \left\{ 4 \right\}$$

The points (1, 4), (2, 0) and (4, p) lie on a straight line. The value of p is:

- 8

10



The graph above represents the equation:

$$f(x) = (x-2)(x-1)(x+4)$$

$$B f(x) = -8(x+2)(x+1)(x-4)$$

$$C f(x) = (x+2)(x+1)(x-4)$$

$$D f(x) = (x-2)(x-1)(x+4)(x-8)$$

$$E f(x) = (x+2)(x+1)(x-4)(x+8)$$

The expression $\frac{(m^2n)^4}{\left(2m^5n^2\right)^3} \div \frac{(m^5n^2)^2}{2mn^5}$ can be simplified to:

A
$$\frac{1}{4m^{16}n}$$
 $\frac{m^{9}n^{4} \times 2mn^{5}}{8m^{15}n^{6} \times m^{10}n^{4}}$

B $\frac{2^{2}}{m^{16}n}$ $4 \frac{8m^{15}n^{6} \times m^{10}n^{4}}{4m^{8}}$

C $\frac{1}{4m^{8}}$ $= \frac{m^{9}n^{9}}{4m^{25}n^{16}}$

E $2^{2}m^{16}n$ $= \frac{1}{4m^{16}n}$

12 The expression $\log_n \left(\frac{1}{n^4}\right)$ equals:

A
$$\frac{n}{4}$$

B $4n$ = $\log_{10} h^{-4}$

C 4 = -4

SECTION 2 EXTENDED-ANSWER QUESTIONS

13. A line joins the points with coordinates (-2, 5) and (6, 9).

a) The equation of the line that joins the 2 points.

e equation of the line that joins the 2 points.

$$M = \frac{9-5}{6--2} = \frac{4}{8} = \frac{1}{2} \qquad \begin{array}{c} y = mx + c \\ 5 = \frac{1}{2}x - 2 + c \\ 5 = -1 + c \\ c = 6 \end{array}$$
or

b) The exact value (in simplest form) of the direct distance between the 2 points.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{64 + 16}$$

$$= \sqrt{(6 - 2)^2 + (9 - 5)^2} = \sqrt{80} = \sqrt{16 \times 5}$$

$$= \sqrt{8^2 + 4^2} = 4\sqrt{5}$$

c) The midpoint of the line.

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \left(\frac{-2+6}{2}, \frac{5+9}{2}\right)$$

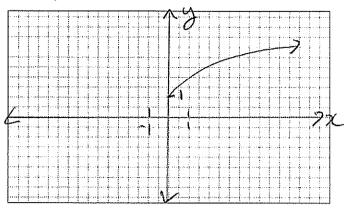
d) The equation of the perpendicular bisector of the line.

$$M_1 = \frac{1}{2} \ni M_2 = -2$$
 $y = Mx + C$
 $7 = -2(2) + C$
 $y = -2x + 11$
 $7 = -4 + C$

or $2x + y - 11 = 0$
 $11 = C$

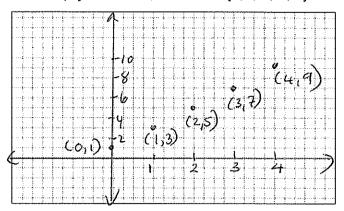
e) State the domain and range of the line segment joining the points (-2, 5) and (6,9)

- 14. Sketch the graphs of each of the following equations. State the domain and range of each.
 - a) $y = \sqrt{x} + 1$, where $x \in R$



Domain: $[0, \infty)$ Range: $[1, \infty)$

b) y = 2x + 1, where $x \in \{0, 1, 2, 3, 4\}$



Domain: {0,1,2,3,4}
Range: {1,3,5,7,9}

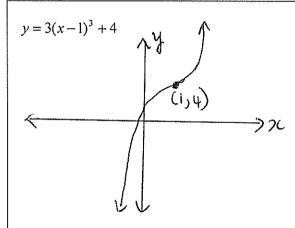
3 + 3 = 6 marks

Sketch each of the following graphs, labelling the point of inflection or equation of any asymptotes where appropriate.

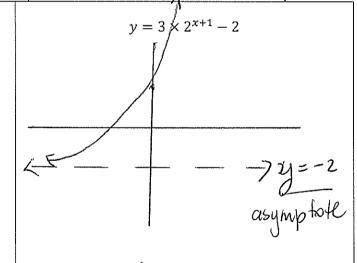
NOTE: You do **not** need to calculate any x or y intercept.

State the equation of the relevant basic shape graph. (ii)

State all dilations and translations required to draw them from the basic shape. (iii)



(iii). Dilated 3 units from the oc-axis
-translated 1 unit in the positive direction of the x-axis and
4 units in the positive direction of the y-axis



(iii) Jilated 3 units from
the y-axis
translated 1 unit in the
regative derection of
the x-axis of
3+3=6 marks

2 anis in the negative direction of the y-axis

16. a) Convert the following quadratic into turning point form: $y = x^2 + 4x - 7$

$$y = \chi^{2} + 4\chi - 7$$

$$= (\chi^{2} + 4\chi + (2)^{2}) - (2)^{2} - 7$$

$$= (\chi + 2)^{2} - 11$$

a) Hence, state the co-ordinates of the turning point.

$$(-2,-11)$$

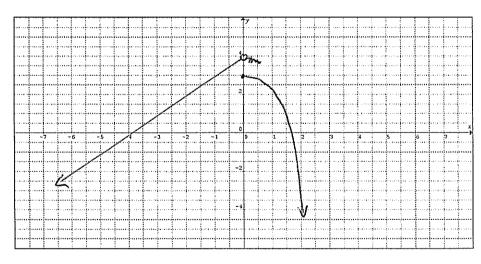
b) State the domain and range

c) What translation would map the parabola $y = x^2$ onto $y = x^2 + 4x - 4x$

translation of 2 units in the negative direction of the x-axis and 11 units in the negative direction direction of the y-axis. 2 + 1 + 2 + 2 = 7 marks

17. If
$$f(x) = \begin{cases} 3 - x^2 & , & x \ge 0 \\ x + 4 & , & x < 0 \end{cases}$$

Sketch this graph



Find:

a) the range of f(x) and

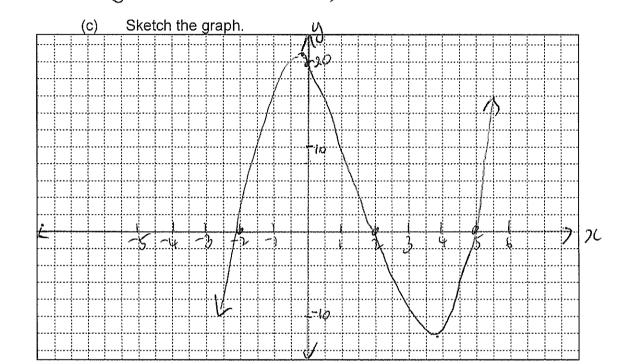
$$(-\omega, 4)$$

b) the value for f(-2)

$$f(-2) = -2+4 = 2$$

18. (a) Factorise
$$x^3 - 5x^2 - 4x + 20$$

(b) What are the co-ordinates of the axes intercepts for the graph of = $x^3 - 5x^2 - 4x + 20$? $\times -1$ where (-2, 0) (2, 0) (5, 0)



What are the co-ordinates of the turning points, correct to correct to 2 decimal places. (-0.36, 20.75) (3.69, -12.60)

$$1 + 2 + 2 + 2 = 7$$
 marks

19. Rewrite these in interval notation:

(a)
$$R^{+}\setminus\{5\}$$
 $(0,5)\cup(5,2)$
(b) $R^{+}\setminus\{1 \le x < 4\}$ $(0,1)\cup(4,2)$
(c) $R^{+}\cup\{-5 < x < -3\}$ $(-5,-3)\cup(0,2)$

(b)
$$R^+\setminus\{1 \le x < 4\}$$
 $(0,1)$ $(4,0)$

(c)
$$R^+ \cup \{-5 < x < -3\}$$
 $(-5, -3) \cup (0, \infty)$

3 marks

20. If
$$f(x) = 3 - x^2$$
, find:
a) $f(-2)$

$$= 3 - (-2)^2$$

$$= 3 - 4$$

$$= -1$$

b)
$$f(m-3) = 3 - (m-3)^{2}$$

= $3 - (m^{2} - 6m + 9)$
= $3 - m^{2} + 6m - 9$
= $-m^{2} + 6m - 6$

1 + 2 = 3 marks

21. Write in simplest index notation:

a)
$$3^{n+1} \times 9^{2n+3} \div 27^{1-3n}$$

$$= 3^{n+1} \times (3^2)^{2n+3} \div (3^3)^{1-3h}$$

$$= 3^{n+1} \times 3^{2n+3} \div (3^3)^{1-3h}$$

$$= 3^{n+1} \times 3^{n+1} \times 3^{n+1} \div (3^{n+1} \times 3^{n+1} \times 3^{n+1} \times 3^{n+1} \times 3^{n+1} \times 3^{n+1}$$

$$= 3^{n+1} \times 3^{n+$$

b)
$$\frac{(a^{-3}\sqrt{b^{3}})^{4} \times (\sqrt{2}a^{4}b^{-3})^{3}}{\sqrt{2}(ab^{-2})^{2}}$$

$$= \frac{a^{-12} b^{\frac{3}{2}} \times 4 \times 2^{\frac{3}{2}} a^{-13} b^{-9}}{2^{\frac{1}{2}} a^{-2} b^{4}}$$

$$= \frac{2^{\frac{3}{2}} b^{-3}}{2^{\frac{1}{2}} a^{-2} b^{4}}$$

$$= \frac{2 a^{2}}{b^{-7}}$$

2 + 3 = 5 marks

22. Solve for x in the following equations:

a)
$$3^{4x+1} = 243$$

$$3^{4x+1} = 3^{5}$$

$$4x+1 = 3^{5}$$

$$4x+1 = 5$$

$$4x = 4$$

$$x = 1$$

b)
$$5^{2x} - 6(5^{x}) + 5 = 0$$
.
 $(5^{2})^{2} - 6(5^{x}) + 5 = 0$
Let $a = 5^{2}$
 $a^{2} - 6a + 5 = 0$
 $(a - 5)(a - 1) = 0$
 $a = 5$ or $a = 1$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$
 $3^{2} - 5^{2} = 5^{2}$

2 + 3 = 5 marks

a) Evaluate $log_2(256)$, showing all working

$$= \log_2 2^8$$

$$= 8\log_2 2$$

$$= 8X1 = 8$$

b) Simplify $4 \log_{10} 2 - 2 \log_{10} 8$

$$4 \log_{10} 2^{4} - \log_{10} 8^{2}$$

$$= \log_{10} \frac{16}{64}$$

$$= \log_{10} \left(\frac{1}{4}\right)$$

c) Solve for x where $\log_5(2x - 3) = 2$

$$5^{2} = 2x - 3$$

$$2x - 3 = 25$$

$$2x = 28$$

$$x = 14$$

24. The number of rabbits that are left on a farm t weeks after a virus is released is given by the function

$$N(t) = 15 + \frac{96}{t+3}$$
 rabbits per hectare.

(a) How many rabbits per hectare were on the farm when the virus was released?

$$N(0) = 15 + \frac{96}{3} = 47$$
 rabbits/hectare

(b) How many rabbits per hectare are there 13 weeks after the virus was released?

$$N(13) = 15 + \frac{96}{13+3}$$

= 21 rabbits / hectare.

(c) How long after the virus is released are there 23 rabbits per hectare?

$$23 = 15 + \frac{96}{t+3}$$

$$8 = \frac{96}{t+3}$$

$$t+3 = \frac{96}{8}$$

$$t+3 = 12 \Rightarrow t=9 \text{ weeks}$$

(d) Will the virus kill all the rabbits? Explain your answer.

No, as t increases, the function approaches the asymptote of N(t)=15. 1+1+2+2=6 marks the no. rabbits will not go below 15 rabbits/hectare.

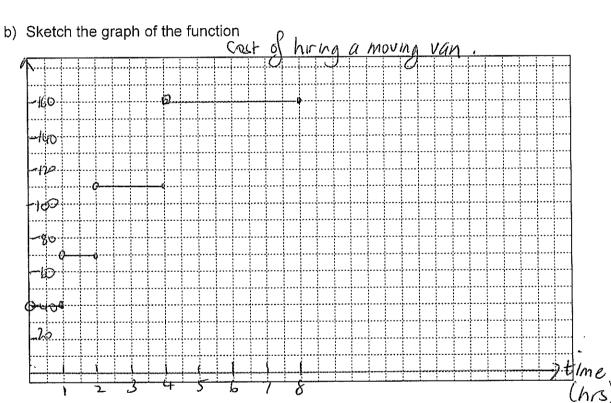
25. The cost of hiring a moving van is described in the table below:

Hours of Hire	Cost
Up to 1	\$40
Over 1 up to 2	\$70
Over 2 up to 4	\$110
Over 4 up to 8	\$160

a) State the cost function, C(t), for hiring up to 8 hours

$$C(t) = \begin{cases} 40 & 0 < t \leq 1 \\ 70 & 1 < t \leq 2 \end{cases}$$

$$\begin{cases} 10 & 2 < t \leq 4 \\ 160 & 4 < t \leq 8 \end{cases}$$



c) State the domain and range of the function.

2 + 3 + 2 = 7 marks