Past VCAA exam questions on continuous random variables and the normal distribution.

2011 Exam 2

Question 6

For the continuous random variable X with probability density function

$$f(x) = \begin{cases} \log_e(x) & 1 \le x \le e \\ 0 & elsewhere \end{cases}$$

the expected value of X, E(X), is closest to

 A. 0.358 $\int_{1}^{2} \infty \log_{2}(x) dx$

 B. 0.5 $\int_{1}^{2} \infty \log_{2}(x) dx$

 C. 1
 = 2.097

 E. 2.097

2011 Exam 2

Question 12

The continuous random variable X has a normal distribution with mean 30 and standard deviation 5. For a given number a, Pr(X > a) = 0.20.⁴

Correct to two decimal places, a is equal to

A. 23.59B. 24.00

C. 25.79

D.) 34.21

E. 36.41

2011 Exam 2

Question 13

In an orchard of 2000 apple trees it is found that 1735 trees have a height greater than 2.8 metres. The heights are distributed normally with a mean μ and standard deviation 0.2 metres.

100

â

The value of μ is closest to

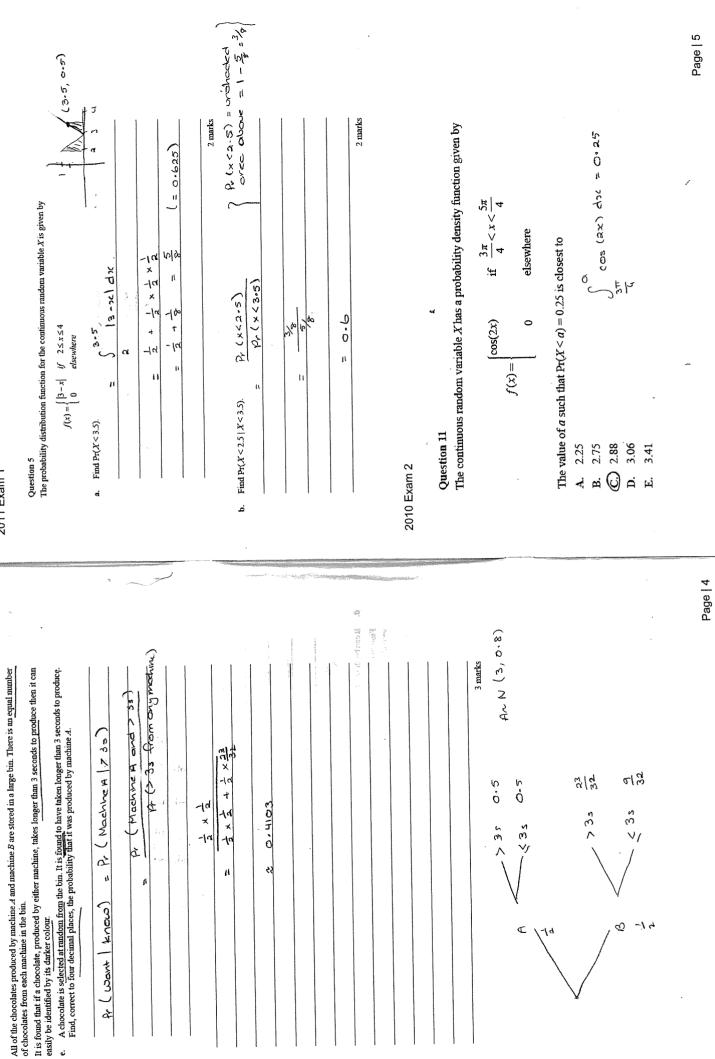
C. 2.230

D. 1.115

E. 0.223

This should be A, I found the wrong area as you can see by my solve sentence.

 $\chi = 2.577$


Solve (norm cof (- 00, 2.8, 0.2, x) = 2000

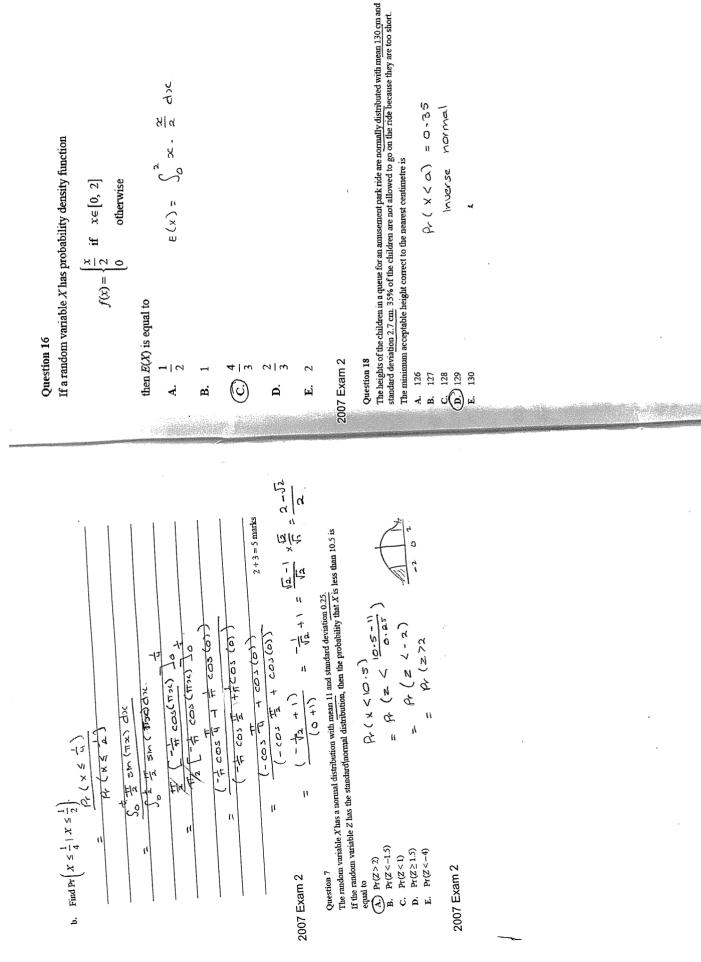
Inverse Normal

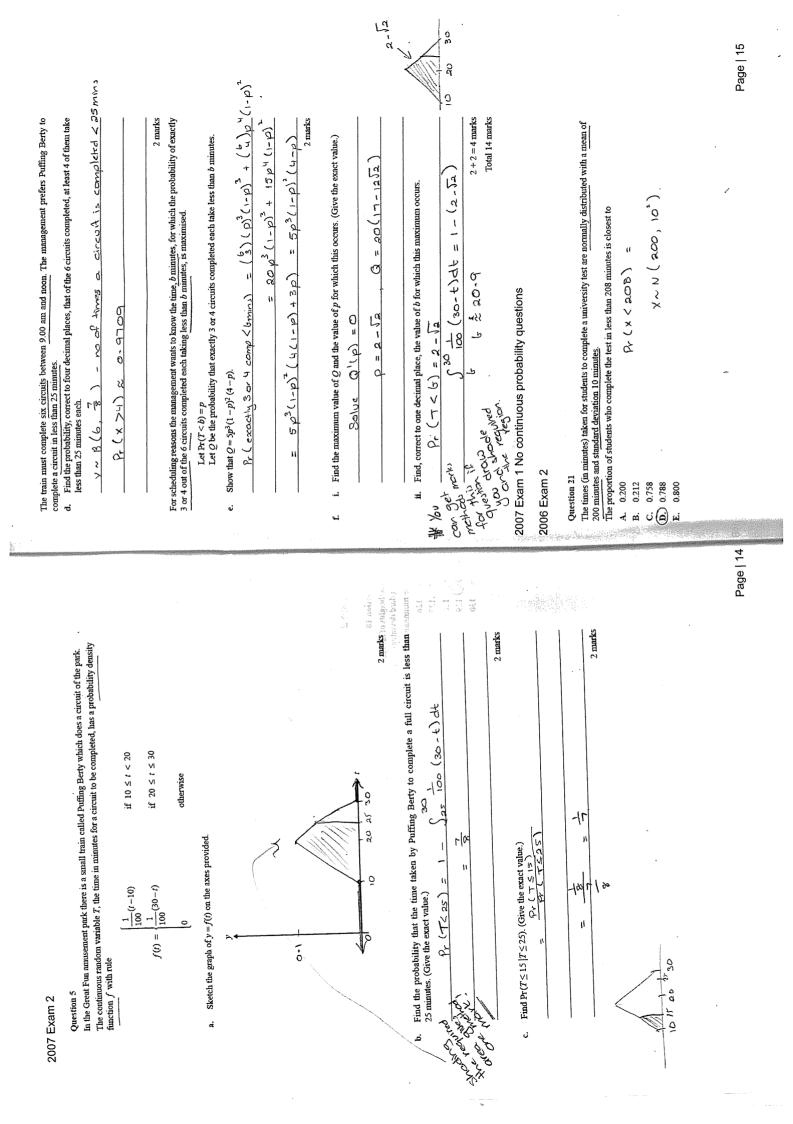
Pr(x > 2.8) = 2000

Left tail

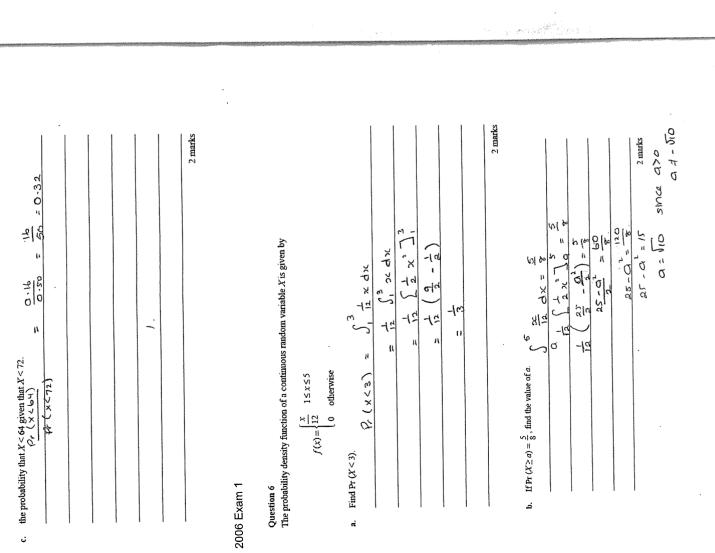
	c. i. Find the median of Y_{c_1}
2011 Exam 2	V
Question 2 In a chocolate factory the material for making each chocolate is sent to one of two machines, machine A or	
machine <i>B</i> . The time, <i>X</i> seconds, taken to produce a chocolate by machine <i>A</i> , is normally distributed with mean 3 and standard deviation 0.8. The time, <i>Y</i> seconds, taken to produce a chocolate by machine <i>B</i> , has the following probability density function.	
$f(y) = \begin{cases} 0 & y < 0 \\ \frac{y}{16} & 0 \le y \le 4 \\ 0.5 \le 0.5(y-1) & y < 4 \end{cases}$	that $\Pr(Y \leq \epsilon)$
	R (YEA)=0.1 WH R (YE4)=0.5 Salue, 5 0.255 - 2 (y.u) H 0= 5.02
11 155 dy 1 1 places 1 55 dy 1 dy 1 0	1 $I + 2 = 3 \text{ marks}$ 1 It can be shown that $\Pr(Y \le 3) = \frac{9}{32}$. A random sample of 10 chocolates produced by machine B is chosen. Find the probability, correct to four decimal places, that exactly 4 of these 10 chocolates took 3 or less seconds to produce. P $Q = \frac{10}{32}$ P $\frac{10}{3}$ P $\frac{10}{3}$ P $\frac{10}{3}$ P $\frac{10}{3}$ <t< td=""></t<>
3333 3 marks	, , , ,

2011 Exam 1


$2C(O \in 3$ ccov) Question 7 The continuous random variable X has a distribution with probability density function given by	$f(x) = \begin{cases} ax(5-x) & \text{if } 0 \le x \le 5 \\ 0 & \text{if } x < 0 \text{ or if } x > 5 \end{cases}$ where <i>a</i> is a positive constant. a. Find the value of <i>a</i> . $\int_{0}^{\infty} \frac{ax(5-x)}{(5x-x)} dx = 1$ $a = \int_{0}^{\infty} \frac{a}{(5x-x)} \frac{b}{(5x-x)} dx = 1$ $a = \int_{0}^{\infty} \frac{b}{(5x-x)} \frac{b}{(2x-x)} $	Image: Second secon	2009 Exam 2 Question 6 The continuous random variable <i>X</i> has a normal distribution with mean 14 and standard deviation 2. If the random variable <i>Z</i> has the standard normal distribution, then the probability that <i>X</i> is greater than 17 is equal to $R_1 (K \times 7^{-1})$ A. $P_1(Z > 3)$ B. $P_1(Z > 3)$ C. $P_1(Z > 3)$ C. $P_1(Z < 2)$ C. $P_1(Z < 2)$ E. $P_1(Z < 2)$ C. $P_1(Z < 2)$ E. $P_1(Z < 2)$ C. $P_1(Z < 2)$ C. $P_1(Z < 2)$ E. $P_1(Z < 2)$ C. $P_1(Z < 2)$ C
2010 Exam 2	Question 13 The continuous random variable X has a normal distribution with mean 20 and standard deviation 6. The continuous random variable X has a normal distribution. The propulsity that Z is between -2 and 1 is equal to The propulsity that Z is between -2 and 1 is equal to The propulsity that Z is between -2 and 1 is equal to A , $P(18 < X < 32) = P_1 (5 < Z < 5) P_1 (-2 < Z < 1)$ $P_1 = P_1 (X < 26)$ $P_1 = P_1 (X < 26)$ $P_2 = P_2 = P_2 = P_2 (-1 < Z < 2)$ $P_1 = P_1 (X < 26)$ $P_2 = P_2 = P_$	b. Find b such that $P(X > 7) = P(Z < b)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(Z > 7 = 5)$ $P_{Y}(X > 7) = P_{Y}(X > 7) = P_{Y}(X > 7)$ $P_{Y}(X > 7) = P_{Y}(X > 7) = P_{Y}(X > 7)$ $P_{Y}(X > 7$	Bage P


7 | age

•


c. I. What is the probability correct to four decimal places, that the diameter of a termis ball which fits into a tim is between 65.6 and 68.4 mm? $P_{r}\left(\frac{1}{10000000000000000000000000000000000$		ii. A tin of four balls is selected at random. What is the probability, correct to four decimal places, that at least one of these balls has diameter outside the desired range of 65.6 to 68.4 mm? $\gamma_{\infty} \otimes (\gamma_{1}, -\infty) \cos(w_{R}) - n_{\infty} - \frac{1}{20} \log(w_{1}) - \frac{1}{10} \log(w_{1}) + \frac{1}{20} \log(w_{1}) + \frac{1}$	I + 2 = 3 marks BBC management wants engineers to change the manufacturing process so that 99% of all balls produced have diameter between 65.6 and 68.4 mm. The mean is to stay at 67 mm but the standard deviation is to be changed. a. What should the new standard deviation be (correct to two decimal places): $A \sim N \left(b^{2} + \sigma^{2} \right) \left(c^{2} + \sigma^{2} + \sigma^$	Image: state stat
2009 Exam 2 Question 11	The continuous random variable X has a processing $f(x) = \begin{cases} \pi \sin(2\pi x) & \text{if } 0 \le x \le \frac{1}{2} \\ 0 & \text{elsewhere} \end{cases}$	The value of a such that $\Pr(X > a) = 0.2$ is closest to A 0.26 B. 0.30 C. 0.32 D. 0.32 E. 0.40 E. 0.40	2009 Exam 2 Question 3 Question 3 Question 3 Resourcey Balt Company (BBC) makes tennis balls whose diameters are normally distributed with meen and simulared devination 1 mm. The termis balls are packed and sold in cylindrical tins that each hold four r_1 mm and simulared devination 1 mm. The termis balls are packed and sold in cylindrical tins that each hold four r_1 mm and simulared devination 1 mm. The termis ball is less than 68.5 mm. r_1 mm is the probability, correct to four decimal places, that a randomly selected termis ball produced by $r_2 \sim N (67) + 7$ $P_1 (x < b \otimes r 5) \approx 0.9332$ 2 mm 2	BBC management would like each ball produced to have diameter between $65.6 \text{ and } 68.4 \text{ nm.}$ b. What is the probability, correct to four decimal places, that the diameter of a randomly selected tensis ball b. What is the probability is mage? Prove Prove

|--|

Find the median time, to the nearest minute, that she spends working out in the gym. $Solve \int A + Solve + So$	3 marks Total 14 marks Total 5 meetin 6 meetin 72 and a standard deviation of 8. Let Z be the standard normal random variable with a mean of 72 and a standard deviation of 8. Let Z be the standard normal random variable $(x > x_0) = 0.84$, correct to two decimal places, to find a. the probability that X is greater than 80 meeting that Y is greater than 80 meeting that $Y = Q$, $(z > \frac{20 - 72}{7})$ is a mean of $(z > \sqrt{2} - \sqrt{2})$ is a mean of $(z > 1) = 0.84$, correct to two decimal places, to find a. the probability that $X = Q$, $(z > 1) = 0.84$, correct to two decimal places, to find $(x > 30) = Q$, $(z > 1) = 0.84$, correct to two decimal places, to find $(z > 1) = 0.84$.	b. the probability that $64 < X < 72$ Pr $\left(b_1 < X < 72 \right) = Pr \left(b_1 - 72 < 72 - 71 \right)$ Pr $\left(b_1 < X < 72 \right) = Pr \left(-72 < 72 - 71 \right)$ Pr $\left(-72 < 72 - 72 - 72 \right)$ Pr $\left(-72 < 72 - 72 - 72 - 72 \right)$ Pr $\left(-72 < 72 - 72 - 72 - 72 - 72 - 72 - 72 $	Page 17
2006 Exam 2 When Kim goes to the gym, the time, <i>T</i> hours, that she spends working out is a continuous random variable with probability density function given by $\int f(t) = \begin{cases} 4t^3 - 24t^2 + 44t - 24 & \text{if } 1 \le t \le 2 \\ 0 & \text{otherwise} \end{cases}$ c. Sketch the graph of $y = f(t)$ on the axes below. Label any stationary points with their coordinates, correct to two decimal places.	a. What is the probability, correct to three decimal places, that she spends less than 75 minutes working out when she goes to the gym? $7^{1-32} \left(4t^3 - 2ut^2 + 4ut + -2ut \right) dt = 2t - 0.1 q \right)$	2 marks 2 marks 2 marks 5 miss 5 miss	on 4 out of the 5 next times she goes to the gym ² $\chi \sim B(5, 0.99h)$. $- ro o' +trover \rightarrow c toorku out 7.75m a sequence \rhoP(\chi = 4) \approx 0.91. \rho$

