Student Name..... Teacher (circle one) DKI JOR VNA Homegroup

MATHEMATICAL METHODS (CAS) UNIT 1

EXAMINATION 1

Wednesday November 2nd 2016

Reading Time: 1:00 – 1:15pm (15 minutes) Writing time: 1:15 – 2:15pm (1 hour)

Instructions to students

This exam consists of **17** questions.

All questions should be answered in the spaces provided.

There are 65 marks available in this examination.

A decimal approximation will not be accepted if an exact answer is required.

Where more than one mark is allocated to a question working must be shown.

Students may not bring any notes or any calculators into this exam.

Diagrams in this exam are not to scale except where otherwise stated.

FORMULAS

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

$$Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$$

$$^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Newton's Iterative formula for approximating roots of a polynomial:

 $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$

(2 + 2 = 4 marks)

2) Consider the set of simultaneous equations:

$$5x - 6y = 21$$
$$x - 2y = 5$$

- **a** Write the set of equations as a matrix equation.
- **b** Use a matrix method to solve the equations and hence determine the values of x and y.

(1 + 3 = 4 marks)

3) Using matrix methods:

a) <u>Calculate</u> the coordinates of the image of the point (17, -5) under the translation defined by $T = \begin{bmatrix} -8\\9 \end{bmatrix}$.	b) <u>Calculate</u> the coordinates of the image of the point $(6, -13)$ under the linear transformation defined by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
c) Describe the transformation defined by the matrix	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. (See part b) above)

(2 + 2 + 1 = 5 marks)

4) Find the exact values of

a)	$\sin 60^{\circ}$	b)	$\tan\frac{2\pi}{3}$	c)	$\cos\left(-\frac{\pi}{6}\right)$

(3 marks)

5) Solve the following equation $2 \sin x = \sqrt{3}, -2\pi \le x \le 2\pi$

b) Sketch the graph, showing <u>one complete cycle</u>. Clearly label key points.

(2 + 3 = 5 marks)

a) Find the average rate of change of y = f(x) with respect to x, between x = 0 and x = 3.

b) Find the instantaneous rate of change of y = f(x) with respect to x at the point where x = 5.

(2 + 2 = 4 marks)

8) Find, using first principles, the derivative of $y = x^2 + 5x + 1$

(3 marks)

9) If $f(x) = x^2(3x^2 - x) + 7$, find f'(-1).

(3 marks)

Page 5 of 8

10) Find the derivatives of: (make sure all answers are expressed with positive indices)

a)
$$y = \frac{7x^2 - 2x}{x}$$

b) $f(x) = \frac{4}{3x^4}$

(2 + 2 = 4 marks)

11) Simplify, making sure that all answers are expressed with positive indices

a)
$$\int (5x^3 + 3x^2 + 2)dx$$

b) $\int \sqrt[3]{x^2} dx$
(2 + 2 - 4 marks)

12) Find
$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x^2 - 4}$$

(2 marks)

13) A particle moves in a straight line such that its displacement, x metres, from a fixed origin at time t seconds is modelled by $x = t^2 - 6t + 8$, $t \ge 0$.

a Identify its initial position.

b Show, using calculus, that the particle is momentarily at rest at t = 3 seconds.

c What is the average speed of the particle over the first 4 seconds?

(1 + 2 + 3 = 6 marks)Page **6** of **8**

a) $\Pr(B' \cap A)$	b) $\Pr(B \mid A)$	c) $\Pr(A' \cup B)$

(3 marks)

15) If Pr(B) = 0.42, $Pr(A' \cap B) = 0.16$ and Pr(A') = 0.51,

a)	complete	this	probab	ility	table

	В	Β'	
A			
A'	0.16		0.51
-	0.42		1

b) Find $Pr(A \cap B')$

c) Find $Pr(A \cup B)$

d) Find Pr(A'|B)

(2+1+1+2=6 marks)

16) Mr Oates needs two students to take some parents on a school tour. He chooses them randomly from a group of ten that were standing near his office. How many different groups of two could he choose?

2 marks

17)

a) Define an iterative formula using Newton's Method for the function $f(x) = 6x^3 + 4x - 3$.

b) Use this to calculate the value of x_1 when $x_0 = 1$. Give your answer as an exact value.

(2 + 1 = 3 marks)

END OF EXAMNATION