

Cambridge Senior Mathematics for the Australian Curriculum/VCE Chapter 3 Quadratics: Assignment

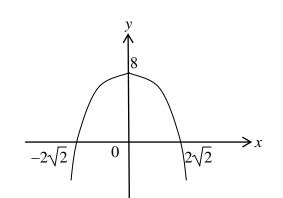
- 1 Sketch the graphs of each of the following:
 - **a** $y = -x^2 + 8$ **b** $y = (x - 3)^2 - 5$ **c** $y = 5 - (x + 3)^2$ **d** $y = x^2 - x - 8$
- 2 Use the quadratic formula to solve each of the following:

a $x^2 - 6x - 2 = 0$ **b** $2x^2 - 3x - 7 = 0$

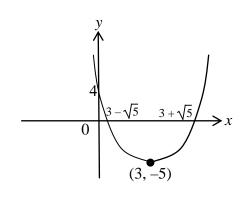
- 3 A rectangle has a perimeter of 80 m and the square of the length of the diagonal is 1000. Find its dimensions.
- 4 A parabola that has its vertex at the point with coordinates (-1, 6) passes through the point (2, 10). Find the equation of the parabola.
- 5 Solve the simultaneous equations for *x* and *y*:

$$y = x^2 + 7x - 11$$
$$y = x - 1$$

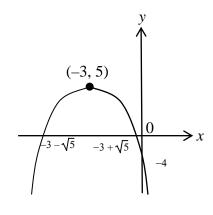
- 6 A lawn *a* metres long and *b* metres wide has a path of uniform width *x* metres around it.
 - **a** Find the area of the path in terms of *a*, *b* and *x*.
 - **b** i If a = 28 and b = 50 find the area of the path in terms of x.
 - ii If the area of the path is 160 m^2 find the value of x.
- 7 Consider the quadratic equation $2px^2 + 6x + 2 = 0$.
 - **a** Find the discriminant.
 - **b** Find the values of *p* for which there are two solutions.
 - **c** Find the values of *p* for which there are no solutions.
 - **d** Find the value of *p* for which there is one solution.
- 8 Using the discriminant, show that the graph of $y = 2x^2 + 6px 2$ touches or crosses the *x*-axis for all values of *p*.
- 9 Consider the quadratic equation $(-2p + 1)x^2 + (p 2)x + 6p = 0$.
 - **a** Find the discriminant.
 - **b** Show that the discriminant is a perfect square.
 - **c** For $p \neq \frac{1}{2}$, show that there are always two rational solutions and find these solutions.

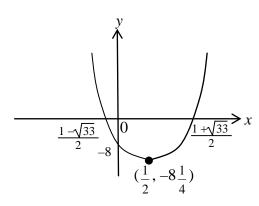

Cambridge Senior Mathematics for the Australian Curriculum/VCE Chapter 3 Quadratics: **Assignment**

- 10 Consider the quadratic equation $ax^2 + 10x + (a 5) = 0$.
 - **a** Find the discriminant.
 - **b** Find the values of *a* for which there are two solutions.
 - **c** Find the values of *a* for which there are no solutions.
 - **d** Find the value of *a* for which there is one solution.
- 11 Consider the quadratic rule $a^2x^2 2ax a + 1$.
 - **a** Find the discriminant.
 - **b** Find the values of *a* for which the graph $y = a^2x^2 2ax a + 1$:
 - i crosses the *x*-axis
 - ii does not cross the *x*-axis.
 - c Show that $a^2x^2 2ax a + 1 = (ax + \sqrt{a} 1)(ax \sqrt{a} 1)$.



Cambridge Senior Mathematics for the Australian Curriculum/VCE Chapter 3 Quadratics: Assignment Answers


1 a


b

d

Chapter 3 Quadratics: Assignment

2 a
$$3 - \sqrt{11}$$
 or $3 + \sqrt{11}$
b $\frac{3 + \sqrt{65}}{4}$ or $\frac{3 - \sqrt{65}}{4}$

3 30 m by 10 m

4
$$y = \frac{4}{9}(x+1)^2 + 6$$

5
$$(-3 - \sqrt{19}, -4 - \sqrt{19}), (-3 + \sqrt{19}, -4 + \sqrt{19})$$

6 a
$$A = 4x^2 + 2xb + 2xa$$

b i $A = 4x^2 + 156x$ ii $x = 1$

7 **a**
$$36-16p$$
 b $p < \frac{9}{4}$
c $p > \frac{9}{4}$ **d** $p = \frac{9}{4}$

8
$$36p^2 + 16 > 0$$
 for all p

9 a
$$49p^2 - 28p + 4$$

b $(7p - 2)^2$
c $2 \operatorname{and} \frac{3p}{1 - 2p}$

10 a
$$-4a^2 + 20a + 100$$

b $\frac{5-5\sqrt{5}}{2} < a < \frac{5+5\sqrt{5}}{2}$
c $a > \frac{5+5\sqrt{5}}{2}$ or $a < \frac{5-5\sqrt{5}}{2}$
d $\frac{5+5\sqrt{5}}{2}$ or $\frac{5-5\sqrt{5}}{2}$

11 a
$$4a^3$$

b i $a > 0$ **ii** $a < 0$