

Mathematical Methods 3/4

Calculus - Are you Exam Ready?

<u>Instructions</u>: There are 4 questions in each section:

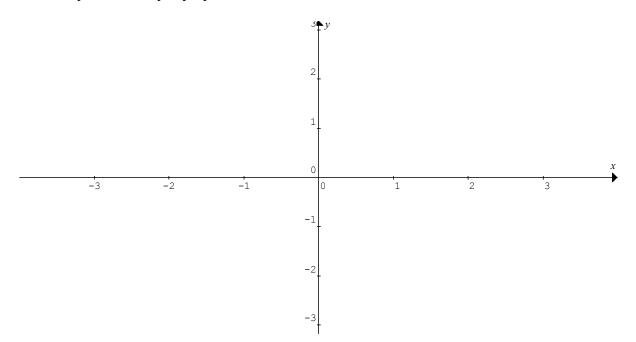
- Part 1
- Part 2 Multiple Choice
- Part 2 Extended Response

Groups of 3.

The whole group collaboratively does Q1 in each section. Then, Person A does Q2 in each section, Person B does Q3 in each section and Person C does Q4 in each section.

Part 1 – No Calculator Allowed. No reference material.

Question 1

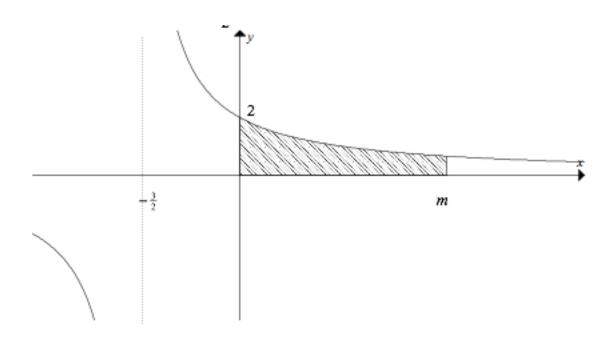

Let
$$f(x) = \tan\left(\frac{\sqrt{x}}{2}\right)$$
.

a. If f(x) = g(h(x)) write down, the rules for the functions g(x) and h(x).

1 mark

b. Evaluate
$$f'\left(\frac{\pi^2}{9}\right)$$
.

8. Sketch the graph of function $y = 1 - \frac{4}{(2x+3)^2}$ on the axes below, clearly indicating all axial cuts and equation of any asymptotes.



2 marks

b. Find the area bounded by the curve $y = 1 - \frac{4}{(2x+3)^2}$, the co-ordinates axes and x = 1.

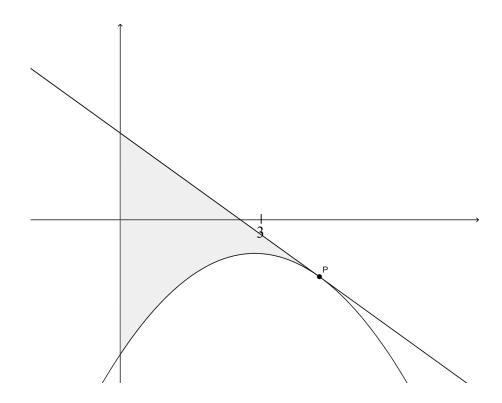
Differentiate xe^{-3x} and, hence, find $\int xe^{-3x} dx$.

Consider the graph of the function $f: R \setminus \{-\frac{3}{2}\} \to R$, $f(x) = \frac{b}{2x+a}$. The graph has a vertical asymptote at $x = -\frac{3}{2}$ and crosses the y-axis at y = 2, as shown below.

The shaded area is the area bounded by the graph of $y = \frac{b}{2x + a}$, the coordinate axes and the line x = m. If the shaded area is equal to $\log_e(27)$ square units, find the values of a, b and m.

Part 2 - Calculator Allowed. Reference Material Allowed.

Question 1


If f(x) and g(x) are two differentiable functions with $f'(x) = \frac{d}{dx}(f(x))$ and $g'(x) = \frac{d}{dx}(g(x))$, then $\frac{d}{dx}(f(g(x)))$ is equal to

- $\mathbf{A.} \qquad f'(g(x))$
- **B.** f'(g'(x))
- C. f'(g(x))+f(g'(x))
- **D.** g'(x)f'(g(x))
- **E.** f'(x)g'(x)

Question 2

The average value of the function with the rule $f(x) = x^3 + e^{2x}$ between x = 0 and x = 2 is equal to

- $\mathbf{A.} \qquad \frac{7 + e^4}{2}$
- $\mathbf{B.} \qquad \frac{7 + e^4}{4}$
- C. $12 + 2e^4$
- **D.** $5 + e^4$
- E. $\frac{11+2e^4}{2}$

The diagram above show the graph of $y = -x^2 + 3x - 3$ and the tangent to the graph at the point P, where x = 3. The tangent has the equation y = mx + c. The shaded area A is the area between the graph, the tangent and the y-axis. Which of the following is **FALSE**?

A.
$$c = 6$$

B.
$$m = -3$$

C.
$$-3m + 6 = -3$$

D.
$$m < 0 \text{ and } c > 0$$

E.
$$A = \int_{0}^{3} (x^{2} + (m-3)x + (c+3))dx$$

Question 4

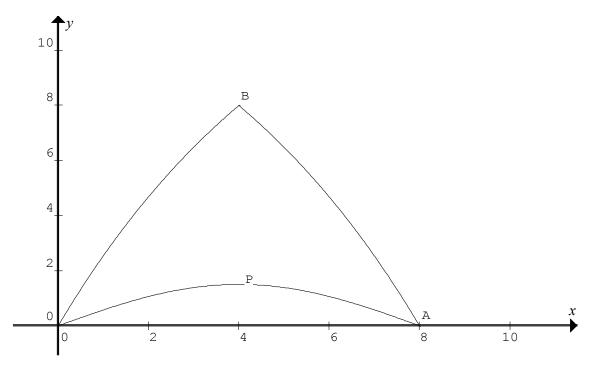
If
$$f(x) = f(-x)$$
 and $\int_{-6}^{6} f(x) dx = 10$, then $\int_{0}^{6} (2f(x)-1) dx$ is equal to

D.
$$10 - x$$

E.
$$20 - x$$

Extended Response Questions Question 1

Consider the function	$f: R \to R$, f	$(x) = x^3 - 3x^2 + cx + d$, where c and d are real numbers.
-----------------------	--------------------	-----------------------------	---------------------------------------


a.	The coordinates of the turning point on the graph of $y = f(x)$ are $(-1,5)$ and $(-1,5)$
i.	Show that in this case $c = -9$, $d = 0$ $v = -27$ and determine the value of u .
	2 m
ii.	For what values of d does the graph of $y = x^3 - 3x^2 - 9x + d$ cross the x-axis at three distinct points?

b.	For what values of c and d does the graph of $y = x^3 - 3x^2 + cx + d$ have two distinct turning points?	
		2 marks
c.	If the graph of $y = f(x)$ is translated p units to the left away from the y -axis, it becomes the graph of $y = x^3$. Find the values of p , c and d in this case.	

Let A be the area bounded by the graph of $y = x^3 - 3x^2 + cx + d$, the coordinate axes and $x = 2$, and that $y \ge 0$ for $0 \le x \le 2$. If this area is approximated by four equally spaced left rectangles, the area is 10 square units. If this area is approximated by four equally spaced right rectangles, the area is 6 square units. The exact area bounded by the graph of $y = x^3 - 3x^2 + cx + d$, the coordinate axes and $x = 2$ is 8			
and $x = 2$ is a			

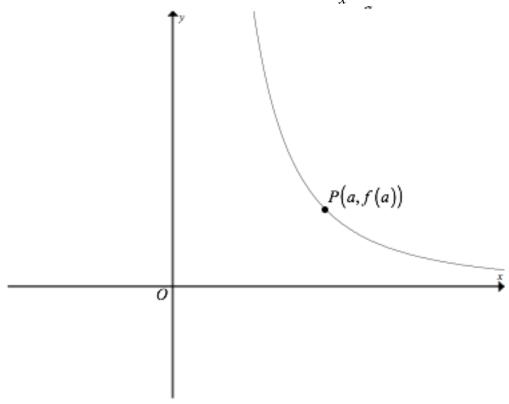
5 marks Total 13 marks

The diagram below shows a "triangular" shade cloth, which is designed to block the direct sunlight onto a children's playground. The cloth lies in a horizontal plane and has vertical posts erected at points O, A and B. The point O is the origin and the coordinates of the points A , P and B are (8,0), (4,1.5) and (4,8) respectively. The axes are shown on the drawing and the units are in metres.

The curve OPA has the form $y = a \sin(nx)$.

a. Explain why a = 1.5 and $n = \frac{\pi}{8}$.

1 mark


The c	urve OB has the form $y = 16(1 - e^{-kx})$.	
b.	Find the value of k .	
c.	The curve BA is the reflection of the curve OB in the line $x = 4$.	1 mark
i.	Write down two transformations, which take the curve OB into the curve BA.	
		1 mark
ii.	Hence write down a function in terms of k , which describes the curve BA.	

d. i.	Write down a definite integral, in terms of k , which gives the total area of the shade cloth.	
		 1 mark
ii.	If the area of the shade cloth can be expressed in the form $p + \frac{q}{k} + \frac{r}{\pi}$, find the values of p , q and r .	
		_
		_
		_

4 marks Total 10 marks

The diagram below shows part of the graph of the function $f:(0,\infty) \to R$ where $f(x) = \frac{4}{x^2}$.

Let P(a, f(a)) where a > 0 be a point on the graph of $y = \frac{4}{x^2}$.

a.	Show that the distance s from the origin O to the point P is given by s	$\sqrt{16 + a^6}$
		$\frac{a^2}{a^2}$

b i.	Find, the exact value of a , for which the distance s is a minimum. Verify that it is a minimum.	
		3 mar
ii.	Find the minimum distance, give an exact answer.	
		1

1 mark

c.i.	Find in terms of a, the equation of the normal to the curve $y = f(x)$ a	t the point P
		2 m
ii.	Find the value of a , for which the normal passes through the origin.	
		1 n Total 9 m
		100017111
s tion 4 Given	the function $g: R \to R$, $g(x) = \sqrt{3}\sin(2x) + \cos(2x)$	
a.	Find the general solution of $g(x) = 0$.	
		1 n
b.	State the smallest positive value of T for which $g(x+T) = g(x)$.	
		1 n
		1 1

Given the function $f:[0,2\pi] \rightarrow R$, $f(x) = \sqrt{3}\sin(2x) + \cos(2x)$.	
c. Find $\{x: f(x) = 0\}.$	
	1 mark
d.i. Find $\{x: f'(x) = 0\}.$	1 IIIain
	 ,

																						_		
•	Sketch the graph of $y = f(x)$ on the axes below, clearly labelling the scale.														1 1									
•	•	•				•	† y	•	•		•		•		•	•		•	•	•	•	•		
•					•	٠				•	٠							•			•	•		
•	•	•	•			•				•	•	•	•			•	•	•	•	•		•	•	
•	•	٠	•	•	•	•		•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	٠	•	
	٠	•	٠	•	•	•		•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	
•	٠	•	•	•	•	٠		•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	
•	•	•	٠	٠	٠	•		•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	
											•													
			•			•					•		•					•		•		•		
	•		•			•			•		•				•					•		•		
		٠		•	•	٠				•	٠	•		•		•	٠	٠	•			٠		
	٠	•	•	•	•	٠		•	•	٠	٠	•	•	•	•	•	•	٠	•	•	٠	•	•	
•	•	•	•	•	•	٠		•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	
	٠	•	•	•	•	٠		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

2 marks Total 10 marks