Student Name		
Teacher (circle one)	AMA	VNA
Homegroup		

MATHEMATICAL METHODS (CAS) UNIT 1

EXAMINATION 1

Thursday June 8th 2017

Reading Time: 11.30 – 11:45pm (15 minutes) Writing time: 11:45 – 12:45pm (1 hour)

Instructions to students

This exam consists of 11 questions.

All questions should be answered in the spaces provided.

There is a total of 52 marks available.

A decimal approximation will not be accepted if an exact answer is required.

Where more than one mark is allocated to a question working must be shown.

Students **may not** bring any notes or any calculators into this exam.

Diagrams in this exam are not to scale except where otherwise stated.

FORMULAS

Function and Graphs Distance formula $d_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint formula $x_M, y_M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Straight line graphs Gradient $m = \frac{y_2 - y_1}{x_2 - x_1}$ General equation y = mx + cEquation through point (x_1, y_1) given by $y - y_1 = m(x - x_1)$ Difference/sum of squares and cubes **Expansions** $(a+b)^2 = a^2 + 2ab + b^2$ $a^{2}-b^{2}=(a+b)(a-b)$

 $a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$ $a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$ $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ **1.** Solve each of the following

(a) $5 - 2x > 7$	(b) $x^2 + 3x - 4 = 0$

1 + 2 = 3 marks

2. (a) Solve the pair of simultaneous equations:

15x - 3y = -214x + 7y = 10

popular and the takings for the performances were \$11,000 from the 700 people that attended them. Find the number of children and the number of adults that attended.

(b) Tickets to a Billanook Performance cost \$30 for adults and \$10 for children. It is very

2 + 3 = 5 marks

3. Expand and simplify where appropriate (a) $(x+3)(x^2-3x+7)$

(b) $2x(x^4 - 3x^2 + 3) - 4x^2(x + 3)$

1 + 1 = 2 marks

4. For each of the following find the equation (or an equation) that fits the information:

(a) a straight line passing through (-1, 3) that is perpendicular to the line y = 3x + 4	(b) a parabola with a turning point at (-3, 7)
(c) a cubic function with a turning point at (-3, 0) and <i>x</i> -intercept at (2, 0)	(d) The line passing through the midpoint of (-3, 4) and (5, -2) with gradient 2.

5. For $A = \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix} B = \begin{bmatrix} 0 & 3 \\ -2 & 1 \end{bmatrix}$ find

a) AB	b) A ⁻¹	
	I	2 x 2 = 4 ma

6. A die is rolled and a coin is tossed:

(a) Draw a tree diagram to show the situation including probabilities.

(b) Find the probability of an even number being rolled and then a head being tossed.

(c) Given that an odd number has been rolled, what is the probability of a head?

2 + 1 + 1 = 4 marks

7. (a) Sketch the function $y = \frac{9}{(x+1)^2} - 4$. Include any intercepts, asymptotes and any other main feature(s)

- b) What is the domain and range of this relation?
- c) The domain is restricted so that it is a one-to-one function. The restricted domain is (a, ∞) . What is the smallest possible value of *a*?
- **d)** Find the inverse of the function with this restricted domain in the form of $f^{-1}(x) =$

8.(a) Show that $3x^2 - 6x + 7$ is the same as $3(x - 1)^2 + 4$

(b) Hence state the transformations that $y = x$ filling in the gaps:	² must undergo to become $y = 3$	<i>x</i> ² – 6 <i>x</i> + 7 by
by	from axis	
Translated byalong	axis	
Translated byalong	axis.	
(c) Find the matrices <i>T</i> and <i>A</i> that complete the where $X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $X' = \begin{bmatrix} x' \\ y' \end{bmatrix}$	e transformations for (b) such th	hat $TX + A = X'$

(d) Using the results from (c) (or otherwise) find the equation of $y = \frac{1}{x}$ when it has undergone the same transformations.

9. (a) By suitable substitution show that (x - 1) is a factor of $f(x) = x^3 + 3x^2 - x - 3$

(b) Divide f(x) by (x-1)

(c) By finding the other factors of f(x) solve f(x) = 0

1 + 2 + 2 = 5 marks

b) Change one of the equations so that h(x) is continuous

2 + 1 = 3 marks

11. A group of 50 students are surveyed. There are 12 who did an amazing job in house music as well as being school volleyball players. A total of 37 students play school volleyball. In the group of 50 there were 30 who didn't do house music.

(a) Put this information into a probability table

(b) Show whether playing school volleyball and being amazing in house music are independent.

2 + 1 = 3 marks

END OF EXAMINATION 1