

BILLANOOK COLLEGE

NAME:

Student Number:

MATHEMATICAL METHODS (CAS) UNITS 3 & 4

Practice July Exam Exam 1 TECHNOLOGY FREE

Friday 21st July, 2017 Reading time: 15 minutes 11:15am- 11:30am Writing time: 1 hour 11:30am – 12:30pm

QUESTION AND ANSWER BOOKLET

	Structure of Booklet		
Number of Questions	Number of questions to be answered	Number of marks	
10	10	40	

- Students are permitted to bring into the test room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the test room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book with a detachable sheet of miscellaneous formulas.

Instructions

- Write your **name** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the test room.

Instructions

Answer **all** questions in the space provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Question 1 (5 marks)

a. If
$$y = x^{2} \sin(x)$$
, find $\frac{dy}{dx}$. 2 marks

b. If $f(x) = \sqrt{x^{2} + 3}$, find $f'(1)$. 3 marks

Question 2 (3 marks)

Sketch the graph of $f: R \setminus \{2\} \rightarrow R$, $f(x) = -1 + \frac{3}{x-2}$ on the set of axes below. Label axes intercepts with their coordinates. Label asymptotes with their equations

Find
$$\int_{1}^{3} \left(\frac{2}{x}+1\right) dx$$
.

Question 4 (3 marks)

Let $f(x) = \frac{1}{\sqrt{3}}\cos(x)$ and $g(x) = \sin(x)$.

a. Solve the equation f(x) = g(x) for $x \mid [0, 2\rho]$.

2 marks

b. Evaluate f(g(0)).

1 mark

Question 5 (2 marks)

Solve the following equation:

$$\frac{4000}{2+7^{3x}} = 5$$

Question 6 (2 marks)

The tangent to the curve $y = \frac{3}{x} - 2$ at the point x = a, where a > 0, has a gradient of -9. Find the value of a. Solve the equation $\log_e(x) + \log_e(3x+2) = 2\log_e(x+1)$ for *x*, where x > 0.

Question 8 (9 marks)

Consider the function with the rule $f(x) = \frac{x-2}{x+2}$

a. Find the rule, f^{-1} , for the inverse of f.

3 marks

The graph of $f: R \rightarrow R$, $f(x) = (x^2 + 2x)e^x$ is shown below.

The region enclosed by the graph of *f* and the *x*-axis is shaded.

a. Find the derivative of $(3 - x^2)e^x$. Give your answer in the form $ae^x - f(x)$, where *a* is a positive constant. 1 mark

b. Use your answer to part **a.** to find the area of the shaded region.

3 marks

Let $f:[0,1] \rightarrow R$, $f(x) = 1 - x^{\frac{2}{3}}$. The graph of f is shown below.

The right-angled triangle *NOP* has vertex *N* on the *x*-axis, and vertex *O* at the origin. The vertex *P* lies on the graph of *f* and has coordinates (x, f(x)) as shown.

a. Find the area *A*, of triangle *NOP* in terms of *x*.

1 mark

the value of <i>x</i> for which <i>A</i> is a maximum.	
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{b}$	
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$	1 mar
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$ where <i>a</i> , <i>b</i> and <i>c</i> are positive integers.	1 mar
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$ where <i>a</i> , <i>b</i> and <i>c</i> are positive integers.	1 mar
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$ where <i>a</i> , <i>b</i> and <i>c</i> are positive integers.	1 mar
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$ where <i>a</i> , <i>b</i> and <i>c</i> are positive integers.	1 mar
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$ where <i>a</i> , <i>b</i> and <i>c</i> are positive integers.	1 mar
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$ where <i>a</i> , <i>b</i> and <i>c</i> are positive integers.	1 mar
the maximum area of triangle <i>NOP</i> . Give your answer in the form $\frac{a\sqrt{b}}{c}$ where <i>a</i> , <i>b</i> and <i>c</i> are positive integers.	1 mar

c. The point *Q* lies on the graph of *f* and on the *y*-axis. The point *R* lies on the graph of *f* and on the *x*-axis.

Find the area enclosed by the line segment *QR* and the graph of *f*. 3 marks

END OF QUESTION BOOKLET