PHYSICS – PILOT STUDY

Written examination 2

DATA SHEET

Directions to students

Detach this data sheet before commencing the examination.

This data sheet is provided for your reference.

PHYSICS EXAM 2 2

1	photoelectric effect	$E_{k\max} = hf - W$
2	photon energy	E = hf
3	photon momentum	$p = \frac{h}{\lambda}$
4	de Broglie wavelength	$\lambda = \frac{h}{p}$
5	resistors in series	$R_{\mathrm{T}} = R_1 + R_2$
6	resistors in parallel	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$
7	magnetic force	F = I l B
8	electromagnetic induction	emf : $\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$ flux: $\Phi = BA$
9	transformer action	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$
10	AC voltage and current	$V_{\rm RMS} = \frac{1}{\sqrt{2}} V_{\rm peak}$ $I_{\rm RMS} = \frac{1}{\sqrt{2}} I_{\rm peak}$
11	voltage; power	V = RI $P = VI$
12	transmission losses	$V_{drop} = I_{line} R_{line}$ $P_{loss} = I_{line}^2 R_{line}$
13	mass of the electron	$m_{\rm e} = 9.1 \times 10^{-31} \rm kg$
14	charge on the electron	$e = 1.6 \times 10^{-19} \mathrm{C}$
15	Planck's constant	$h = 6.63 \times 10^{-34} \text{ J s}$ $h = 4.14 \times 10^{-15} \text{ eV s}$
16	speed of light	$c = 3.0 \times 10^8 \text{ m s}^{-1}$

$Detailed\ study\ 3.1-Synchrotron\ and\ applications$

17	energy transformations for electrons in an electron gun (<100 keV)	$\frac{1}{2} \text{m v}^2 = \text{e V}$
18	radius of electron beam	r = p/qB
19	force applied to an electron beam	F = qvB
20	Bragg's Law	$n\lambda = 2d\sin\theta$
21	electric field between charged plates	$E = \frac{V}{d}$

Detailed study 3.2 – Photonics

22	band gap energy	$E = \frac{hc}{\lambda}$
23	Snell's Law	$n_1 \sin i = n_2 \sin r$
24	acceptance angle	$\theta_{\rm A} = \sin^{-1} \sqrt{\left(n_1^2 - n_2^2\right)}$
25	numerical aperture	$NA = \sin \theta_{A}$

Detailed study 3.3: -Recording and reproducing sound

26	speed, frequency and wavelength	$v = f\lambda$
27	intensity and levels	sound intensity level $(\text{in dB}) = 10 \log_{10} \left(\frac{I}{I_0} \right)$
		where $I_0 = 1.0 \times 10^{-12} \mathrm{W m^{-2}}$

Prefixes/Units

p = pico =
$$10^{-12}$$

n = nano = 10^{-9}
 μ = micro = 10^{-6}
m = milli = 10^{-3}
k = kilo = 10^{3}
M = mega = 10^{6}
G = giga = 10^{9}
t = tonne = 10^{3} kg