

Trial Examination 2007

VCE Physics Unit 3

Written Examination

Suggested Solutions

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION A – CORE

Area of study 1 - Motion in one and two dimensions

Question 1

initial momentum = final momentum

$$(80 \times v_{Mick}) + (55 \times -5) = 135 \times 4$$
 1 mark
 $v_{Mick} = \frac{815}{80} = 10.2 \text{ m s}^{-1}$ 1 mark

Question 2

impulse = $m\Delta v$	
$\Delta v = 4 - (-5) = 9 \text{ m s}^{-1}$	1 mark
impulse = $55 \times 9 = 495$ N s	1 mark

Question 3

Before collision:

kinetic energy =
$$\frac{1}{2} \times 80 \times 10.22 + \frac{1}{2} \times 55 \times 52 = 4849 \text{ J}$$
 1 mark

After collision:

kinetic energy = $\frac{1}{2} \times 135 \times 42 = 1080 \text{ J}$ 1 mark

Since the final kinetic energy is less than the initial kinetic energy, the collision is inelastic. 1 mark 1 consequential mark for initial kinetic energy = $687.5 + 40 \times (Q11)^2$

Question 4

At constant speed, $\Sigma F = 0$, so driving force = resistive force = 10000 N	1 mark
At 100 m, resistive force = 7000 N (from graph) so	
$\Sigma F = 10000 - 7000 = 3000 \text{ N}$	1 mark

Question 5

area under graph = work done to overcome resistive forces

= 19.5 squares $\times (2000 \times 100) = 3.9 \times 10^6 \text{ J}$	1 mark
increase in kinetic energy = total work done – work done to overcome resistive forces	
$\frac{1}{2} \times 1500 \times v^2 = 10000 \times 500 - 3.9 \times 10^6$	1 mark

$$v = 38 \text{ m s}^{-1}$$

Question 6

At constant speed, ΣF on skier = 0 = tension – resistive force

$$0 = 2500 - F_{\text{resistive}}$$

$$F_{\text{resistive}} = 2500 \text{ N}$$

$$1 \text{ mark}$$

1 mark

For the boat, $\Sigma F = 0 = F_{\text{driving}} - 2500 - 9000$ so $F_{\text{driving}} = 11500$ N.	1 mark
$v = \frac{90}{3.6} = 25 \text{ m s}^{-1}$	1 mark
$P_{\rm av} = Fv = 11500 \times 25 = 2.9 \times 10^5 \text{ W}$	1 mark

Question 8

The skier will appear to move vertically up and down1 markwith no horizontal displacement.1 mark

Question 9

3 marks *1 mark for each force correctly marked*

To find the radius of the circular motion, $\sin 70.5^\circ = \frac{r}{1.25}$ so $r = 1.18$ m.	1 mark
$\Sigma F = \text{tension} \times \sin 70.5^\circ = \frac{4\pi^2 mr}{T^2}$	
$2.4\sin 70.5^\circ = \frac{4\pi^2 \times 0.08 \times 1.18}{T^2}$	1 mark
T = 1.3 s	1 mark
Question 11	
$k = \frac{200}{0.02} = 1.0 \times 10^4 \text{ N m}^{-1}$	1 mark
$\frac{1}{2}mv^2 = \frac{1}{2}kx^2$	
$\frac{1}{2} \times 0.05 \times (5.0)^2 = \frac{1}{2} (1.0 \times 10^4) x^2$	1 mark
x = 0.011 m = 1.1 cm	1 mark
Question 12	
Vertically:	
$u = 5\sin 35^\circ = 2.86, v = 0, a = -9.8, x = ?$	
$v^2 = u^2 + 2ax$	
$0^2 = (2.86)^2 + (2 \times -9.8 \times x)$	1 mark
x = 0.42 m	
height above floor = $0.42 + 0.8 = 1.22$ m	1 mark

Vertically: $u = 5 \sin 35^\circ = 2.86, v = 0, a = -9.8, v = ?$ $v^2 = u^2 + 2ax$ $v^2 = (2.86)^2 + (2 \times -9.8 \times -0.8)$ so v = 4.88 m s⁻¹ 1 mark Horizontally: $v = 5\cos 35^\circ = 4.09 \text{ m s}^{-1}$ 1 mark Magnitude of velocity: $v^2 = (4.88)^2 + (4.09)^2$ so v = 6.4 m s⁻¹ 1 mark Ν

$$4.88 \qquad \qquad 4.09 \\ \tan \theta = \frac{4.88}{4.09} \\ \theta = 50^{\circ}$$

Question 14

$\frac{r_{\rm Phobos}^3}{T_{\rm Phobos}^2} = \frac{r_{\rm Deimos}^3}{T_{\rm Deimos}^2}$	
$\frac{(9.4 \times 10^6)^3}{T_{\text{Phobos}}^2} = \frac{(2.35 \times 10^7)^3}{(30.3)^2}$	1 mark

 $T_{\rm Phobos} = 7.67 \ \rm hr$

Question 15

$\frac{GM}{GM} = \frac{r^3}{2}$	
$4\pi^2$ T^2	
$\frac{(6.67 \times 10^{-11})M}{(2.35 \times 10^7)^3} = \frac{(2.35 \times 10^7)^3}{(2.35 \times 10^7)^3}$	1 mark
$4\pi^2$ (30.3 × 60 × 60) ²	
mass of Mars = 6.46×10^{23} kg	1 mark

mass of Mars = 6.46×10^{23} kg

Question 16 D

The area under a graph of gravitational field strength versus distance equals the change in energy for a 1 kg mass as it moves from one distance from the centre of the object producing the gravitational field to another. If the object moves towards Mars (i.e. from r_2 to r_1) it will gain kinetic energy and lose potential energy. Hence the correct answer is **D**.

1 mark

1 mark

2 marks

Area of study 2 – Electronics and photonics

Question 1

$$V_{\text{OUT}} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\text{IN}} = \left(\frac{2.5}{4.0}\right) 20 \text{ V}$$

$$= 12.5 \text{ V}$$
1 mark

Question 2

$V_{\text{OUT}} = 15 \text{ V} = \left(\frac{R_2}{1.5 + R_2}\right) 20 \text{ V}$	1 mark
$V_{\rm OUT} = 15 \text{ V} = \left(\frac{R_2}{1.5 + R_2}\right) 20 \text{ V}$	1 mark

$$\therefore 22.5 + 15R_2 = 20R_2$$

$$R_2 = \frac{22.5}{5} = 4.5 \text{ k}\Omega$$
1 mark

Question 3

An electro-optical converter converts electrical signals	1 mark
into light (electromagnetic radiation) signals.	1 mark

Question 4

The diode voltage at $40 \text{ mA} = 1.5 \text{ V}$.	
Hence the voltage drop across $R_{\rm D} = 8.5$ V (as it is a series circuit).	1 mark
$R_2 = \frac{8.5 \text{ V}}{0.04 \text{ A}} = 213 \Omega$	1 mark
Question 5	
increase	1 mark
Question 6	
If $R_{\rm D}$ is smaller, then I must become larger.	1 mark
Hence the LED grows brighter.	1 mark
Question 7	
inverting	1 mark
Question 8	
The gradient of the graph in Figure 3 is negative.	1 mark
Question 9	
$gain = \left \frac{V_{OUT}}{V_{IN}} \right $	1 mark
$=\frac{15 \text{ V}}{5 \text{ V}}=3 \text{ (accept -3)}$	1 mark

3 marks 1 mark for correct voltage 1 mark for correct period 1 mark for correct clipping

Question 11	
$V_{R_{\rm C}} = I_{\rm C} R_{\rm C} = (2 \times 10^{-3})(1.8 \times 10^3) = 3.6 \text{ V}$	1 mark
$V_{\rm OUT} = 10 - 3.6 = 6.4 \text{ V}$	1 mark
Question 12	
$v_{\rm OUT} = i_{\rm C} R_{\rm C} = (1.2 \times 10^{-3})(1.8 \times 10^{3})$	
= 2.2 V	1 mark
Question 13	
The capacitor C_{IN} blocks any DC component of the input voltage.	2 marks
Question 14	
$gain = \left \frac{V_{OUT}}{V_{IN}} \right $	1 mark
$=\frac{2.2 \text{ V}}{10 \times 10^{-3} \text{ V}}$	
= 220	1 mark

SECTION B – DETAILED STUDIES

Detailed study 1 – Einstein's special relativity

Question 1

The Lorentz length contraction is the shortening of an object in its direction of motion1 markwhen measured from a reference frame in motion relative to the object.1 mark

Question 2

$L = L_0 \sqrt{1 - \frac{v^2}{c^2}} = 0.3 \sqrt{1 - \frac{(0.95c)^2}{c^2}}$	1 mark
= 0.09 m	1 mark

Question 3

0.09 m

↔ 0.3 m	
	1 mark

Question 4

The mass of a moving electron increases as its velocity relative to the observer increases.

Question 5

$$\Delta E = 2.0 \text{ GeV}$$

$$\Delta m = \frac{\Delta E}{c^2} = \frac{(2.0 \times 10^9)(1.6 \times 10^{-19})}{(3 \times 10^8)^2}$$
1 mark
$$= 3.6 \times 10^{-27} \text{ kg}$$
1 mark

Question 6

$\frac{1}{2}mv^2 = 2.0 \text{ GeV}$	
$v = \sqrt{\frac{2 \times (2.0 \times 10^9)(1.6 \times 10^{-19})}{9.1 \times 10^{-31}}}$	1 mark
$= 2.7 \times 10^{10} \text{ m s}^{-1}$	1 mark

Question 7

This is much faster than c, the speed of light.	
Hence, according to Einstein's relativity, it is not possible.	

Question 8

The aether was the medium through which light was thought to travel.	1 mark
It was believed to permeate all of space.	1 mark

Question 9

Michelson and Morley expected to see a shift in the interference pattern	1 mark
produced by light waves travelling parallel and perpendicular to the aether wind.	1 mark

1 mark 1 mark

1 mark

1 mark

No change was observed in the interference pattern.	1 mark
This was a null result.	1 mark

Question 11

The result demonstrated that there was no evidence for the concept of the aether. 1 mark Light can travel through space that is entirely empty. 1 mark

Question 12

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

= $\frac{1}{\sqrt{1 - \frac{(0.999995c)^2}{c^2}}}$
= 316.2 1 mark

Question 13

kinetic energy = $mc^2 - m_0c^2 = m_0c^2(\gamma - 1)$	
kinetic energy = $(1.67 \times 10^{-27}) \times (9 \times 10^{16})(315)$	1 mark
$= 4.7 \times 10^{-8} \text{ J}$	1 mark

Detailed study 2 - Investigating materials and their use in structures

Question 1

Stiffness is given by Young's modulus, which is the gradient of the graph of stress versus strain. 1 mark The HMPE graph has a steeper gradient than the nylon graph, so it is stiffer. 1 mark

Question 2 B

The area under the HMPE graph is greater, so HMPE is tougher than nylon and A is incorrect. HMPE withstands a greater stress before breaking, so HMPE is stronger than nylon and B is correct. A stronger material will be harder to break, so C is incorrect. The graph does not provide information about flexibility, so **D** is incorrect.

Question 3

stress = $\frac{F}{A} = \frac{100 \times 10}{\pi \times (0.002)^2} = 8.0 \times 10^7 \text{ N m}^{-2}$	1 mark
From the graph, at this stress the strain is equal to $0.4\% = 0.004$.	1 mark

From the graph, at this stress the strain is equal to 0.4% = 0.004.

strain =
$$\frac{\Delta l}{l}$$

 $\therefore \Delta l = 0.004 \times 3.0 = 0.012 \text{ m}$ 1 mark

2 marks

The stress for this load falls within the linear region of the stress-strain graph for HMPE.1 markThis means that the material will behave elastically and will not be permanently deformed.1 mark

Question 5

The maximum force that nylon can withstand = maximum stress \times area

$$= (7.2 \times 10^7) \times (\pi \times (0.0025)^2) = 1414$$
 N 1 mark

tension in fishing line, T weight of shark, mg $\Sigma F = ma = T - mg$ 100a = 1414 - 1000 $a = 4.13 \text{ m s}^{-2}$

ma = T - mga = 1414 - 1000

Question 6

area under graph = energy per unit volume	
1 square = $0.01 \times 10 \times 10^7 = 10^6 \text{ J m}^{-3}$	1 mark
area under graph = 3 squares $\times (10^6) = 3.0 \times 10^6 \text{ J m}^{-3}$	1 mark
energy = area under graph × volume = $(3.0 \times 10^6) \times 1.5 \times (\pi \times (0.0025)^2)$	1 mark
energy = 88 J	1 mark

Question 7

tension1 markThe tensile strength of concrete is smaller than its compressive strength.1

Regions A and D

These are the regions where tension occurs in this structure.

Question 8

1 mark

1 mark

1 mark

 Take torque about point Y.
 $0.4F_x = 0.6(30 \times 10)$ 1 mark

 $F_x = 450$ N
 1 mark

Question 10

Take torque about point *X*.

$(300 \times 0.2) + (2000 \times x) = 0.4 \times 1000$	1 mark
2000x = 340, so $x = 0.17$ m	1 mark
distance from point $W = 0.8 - 0.17 = 0.63$ m	1 mark

Detailed study 3 – Further electronics

Question 1

T = 20 ms	
$f = \frac{1}{T} = \frac{1}{2 \times 10^{-2}}$	1 mark
= 50 Hz	1 mark

Question 2

$V_{\rm RMS} = \frac{V_{\rm P}}{\sqrt{2}} = \frac{20}{\sqrt{2}}$	1 mar
= 14.1 V	1 mar

$$\frac{N_{\rm P}}{N_{\rm S}} = \frac{V_{\rm IN \, PEAK}}{V_{\rm OUT \, PEAK}} = \frac{240 \sqrt{2}}{4}$$

$$= 85 : 1$$
1 mark

$$P = IV$$

$$\therefore I = \frac{0.24}{240}$$

$$= 1 \times 10^{-3} = 1.0 \text{ mA}$$
1 mark

Question 5

$$\frac{I_{\rm S}}{I_{\rm P}} = \frac{N_{\rm P}}{N_{\rm S}} \Longrightarrow I_{\rm S} = 1.0 \text{ mA} \times 85$$

$$= 85 \text{ mA}$$
1 mark

Question 6

3 marks 1 mark for 2.6 V peak value 2 marks for full-wave rectification

Question 7

 $\tau = RC$

 $= 2 \times 10^4 \times 10 \times 10^{-6} = 0.2 \text{ s}$

1 mark 1 mark

2 marks 2 marks for correct ripple

Question 9 B and D

2 marks

Since $\tau = RC$, an increase in *R*, *C* or both will create a larger time constant and therefore a smoother output. *1 mark for B and no other answers 1 mark for D and no other answers 2 marks for B and D and no other answers*

Question 10

V = IR	
$R = \frac{9.0 \text{ V}}{300 \text{ mA}}$	1 mark
$= 30 \Omega$	1 mark

Question 11

Certain kinds of circuit (e.g. DVD players) need voltage regulators to ensure a constant voltage 1 mark that allows for consistent amplification levels and motor speeds. 1 mark

The performance of voltage regulators is compromised	1 mark
when the regulator's temperature becomes too high.	1 mark