ACCESS EDUCATION

Access Education

PHYSICS Unit 3 & 4 Trail examination 2017

Solutions

SECTION A – Multiple-choice questions

Question 1 D

At the atomic level in order to measure the position of a particle we have to interact with it for example by firing photons at it. At this small scale the interaction of the photon with a subatomic particle will cause a change in momentum not applicable to heavier masses and so we cannot determine both its position and momentum at any one time. Heisenberg defined the relationship as $\Delta x \Delta p \ge \frac{h}{4\pi}$ where Δ represents the uncertainty so the smaller Δx the larger Δp

Question 2 A

Net force is vertically downwards so $F_{net} = T + mg \Rightarrow T = F_{net} - mg$, T must be positive so T > mg

Question 3 D

Diffraction is proportional to λ/w and $\lambda = h/p$ and p = mv so only beam intensity will not change the pattern produced.

Question 4 B

5 \times 50g masses each with 0.5g uncertainty give <u>+</u> 2.5g uncertainty in final mass

Question 5 D

Accuracy is defined as half of the smallest scale available

Question 6 B

Relative uncertainty is another name for percentage uncertainty.

Systematic (error) is caused by a fault in the design or operation of a measuring device that is consistent for all measurements ie the scales were reading 0.05 g too high.

Random (error) is the fluctuations between identical measurement processes ie weighing the same mass 3 times and getting 3 different readings 10.01g, 10.00g, 10.02g

Human (error) is a mistake made by the experimentor ie transposing figures when recording data ie writing 45.8 instead of 54.8 etc

Question 7 B

 $k = \frac{F}{\Delta x} = \frac{9.8 \times 5 \times 50}{28.9 - 14.0} = 16.443$ mass % uncertainty = $\frac{2.5}{250} \times 100 = 1\%$ extension % uncertainty = $\frac{0.0005}{0.149} \times 100 = 0.336\%$ k % uncertainty = 1 + 0.336 = 1.336%k absolute uncertainty = $\pm \frac{1.336}{100} \times 16.443 = 0.2196 = 0.2$ So k = 16.4 ± 0.2 N m⁻¹

Question 8 D

Slide D is closest to angle of polarised light

Question 9 B

Magnetic field lines go from North to south so right hand end is a North pole. AC would change the field direction to often to develo a clear pattern with the compass

Question 10 A

 $E_k = \frac{1}{2}mv^2$ at highest point all motion is horizontal (constant velocity) $v = 22\cos 40^\circ = 16.85$ m/s $E_k = \frac{1}{2} \times 4 \times 16.85^2 = 568 J$

Question 11 D

 $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \frac{(0.8c)^2}{c^2}}} = \frac{1}{\sqrt{1 - 0.8^2}} = 1.67$ $l_0 = l\gamma = 308 \times 1.67 = 513 m$

Question 12 A

 $F = \frac{kq_1q_2}{r^2} = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 3.2 \times 10^{-19}}{(4 \times 10^{-3})^2} = 2.88 \times 10^{-23} N$

Question 13 B

The interference between the light coming from both slits was a wave characteristic that particles could not produce

Question 14 C

Incandescent light sources produce wide spectrum light and heat

Question 15 C

 $E = hf - \phi = 4.14 \times 10^{-15} \times 6 \times 10^{15} - 2.3 = 22.54 \text{ eV}$

Question 16 C

Total internal reflection can only occer when refraction is away from the normal ie when the second media has a lower refractive index that the first medium

Question 17 C

The Doppler effect is caused when the source of the waves is moving relative to the observer. Both sound and light travel via waves.

Question 18 B

The Proton has a heavier mass and the opposite charge so deflection is in downwards direction but due to its greater inertia the proton will not deflect as quickly as the electron

Question 19 B

An independent variable is one which the experimenters choose the value of. The balloon size was the dependent variable

Question 20 B

Standing waves only appear stationary. They ae the outcome of constructive and destructive interfernce between two identical waves travellingin opposite directions ie resonance

SECTION B

Question 1 (13 marks)

a.	$\Delta E_{\rm p} = \Delta E_{\rm k}$				
\Rightarrow	$mg\Delta n = \frac{1}{2}mv^2$	··2 ①			
\rightarrow	$y_{.0}^{2} = 7.84$	v- U			
\rightarrow	v = 2.8 m/s	\bigcirc			
		-			
b .	$F_{net} = T - mg$			↑ ↑	
\Rightarrow	$I = F_{net} + mg$ mv^2				
	$=\frac{m}{r}$ + mg				
	$=\frac{2 \times 2.8^2}{2.5} + 2 \times 9.8$ ①				
	= 50.96 N ①			mg	
				▼ 111g	
c.	$p_i = p_f$				
\Rightarrow	$2 \times 2.8 = 3.2v$ ①				
\Rightarrow	$v = \frac{5.6}{3.2} = 1.75 \text{ m/s}$ ①				
	5.2				
d.	Initial $E_k = \frac{1}{2}mv^2 = \frac{1}{2} \times 2 \times 2.8^2 = 7.84 \text{ J}$				
	Final $E_k = \frac{1}{2}mv^2 = \frac{1}{2} \times 3.2 \times 1.75^2 = 4.9 J$ (1) <i>CONSEQUENTIAL on v from part of Consequence of the second secon</i>				
\Rightarrow	COLLISION IS INELASTIC			\mathbb{O}	
6	$\Delta F_{\mu} = \Delta F_{\mu}$				
\Rightarrow	$mg\Lambda h = \frac{1}{2}mv^2$				
\Rightarrow	$9.8 \times 2 \times \Delta h = \frac{1}{2} \times 2 \times 1$	1.75^{2}	1	CONSEQUENTIAL on v from part c	
\rightarrow	$\Delta h = \frac{1.75^2}{1.75^2} = 0.15625 m$		ſ	$h = \frac{(Answer c)^2}{(Answer c)^2}$	
\rightarrow	-15.6 cm		U	19.6	
	- 15.0 cm				
f.	Work = $F\Delta x = \Delta E_k$				
\Rightarrow	$1.4F = \frac{1}{2} \times 3.2 \times 1.75^2$	1	CONSE	EQUENTIAL on v from part c	
\Rightarrow	F = 3.5 N	1	F = 1.1	$F = 1.14 \times (Answer c)^2$	

c.

Wave model predicts any frequency of light will produce the photoelectric effect, but there is a minimum (threshold) frequency for every metal $extsf{0}$

Wave model predicts a delay in the photoelectric effect with low intensity light of any frequency. Results show if frequency is above threshold then the effect is immediate. If frequency below threshold no effect at any intensity.

 $\begin{array}{l} Higher \ intensity \ light \ should \ produce \ more \ energetic \ photoelectrons \ than \ low \ intensity \ light \ of \\ the \ same \ frequency \ according \ to \ wave \ model. \ Results \ show \ higher \ intensity \ light \ produces \\ more \ photoelectrons \ of \ the \ same \ maximum \ E_k \ not \ more \ energetic \ ones \\ \end{array}$

Question 9 (9 marks)

a. $E = \frac{hc}{\lambda} \Rightarrow$ shortest wavelength will have the largest energy so largest transition is n = 3 to n = 1 of 10.4 - 3.7 = 6.7 eV

$$\Rightarrow \lambda = \frac{nc}{E} = \frac{4.14 \times 10^{-7} \times 3 \times 10^{-7}}{6.7} \quad \textcircled{0}$$
$$\Rightarrow \quad \lambda = 1.8537 \times 10^{-7} \text{ m}$$
$$= 185.4 \text{ nm} \qquad \textcircled{0}$$

b. 6 lines. ① Transition from n = 4 to n = 1 is across 4 - 1 = 3 levels so total number of possible transitions is given by the arithmetic sum formula $S_n = \frac{n}{2}[2a - (n - 1)d]$ where *n* is the difference between the transition levels and *a* and *d* are always equal to 1

c. $1.68 \times 10^{-18} J = \frac{1.68 \times 10^{-18}}{1.6 \times 10^{-19}} = 10.5 \ eV$ This is greater than 10.4 eV so electron will escape the mercury atom The atom becomes an ion \bigcirc

d.

① Standing waves are stable due to resonance

- ① Electron energy $E = \frac{hc}{\lambda}$ so at these wavelengths the energy is also exact and thus the electrons are found only at specific energy levels.

Question 10 (5 marks)

a. 0° ② Sides of prism are parallel so rays will only be translated parallel to origin rays

b.
$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \Rightarrow \theta_2 = \sin^{-1} \left(\frac{n_1 \sin \theta_1}{n_2} \right)$$

$$\theta_{red} = sin^{-1} \left(\frac{1 \times sin_{30}^o}{1.5} \right) = 19.47^o$$
 (1)

$$\theta_{green} = \sin^{-1}\left(\frac{1 \times \sin 30^o}{1.58}\right) = 18.44^o \quad \bigcirc$$

 $\ensuremath{\mathbbm O}$ for red arrow less refracted than green arrow on diagram

Question 11 (7 marks)

a. $\Delta x = \frac{\lambda L}{d} = \frac{620 \times 10^{-9} \times 0.8}{0.04 \times 10^{-3}} = 1.24 \times 10^{-3} \text{ m}$ distance to 3rd dark band = 2.5 Δx = 2.5 × 1.24×10⁻³ ① = 3.1×10⁻³ m = 3.1 mm ①

b. 2 keV electrons have wavelength $\lambda = \frac{hc}{E} = \frac{4.14 \times 10^{-15} \times 3 \times 10^8}{2000} = 6.21 \times 10^{-10} \text{ m}$ $6.21 \times 10^{-10} \text{ m} = 0.621 \text{ nm}$ ① this is ~ 1000 times smaller than the laser wavelength of 620 nm ① diffraction is proportional to $\frac{\lambda}{w}$ (maximum when $\frac{\lambda}{w} = 1$) so no diffraction ① only two lines detected in line with the slits (no interference pattern) ①

a.
$$g = \frac{GM}{r^2} = \frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{(9400 \times 10^3)^2}$$
 ①
= 0.483 N/kg ①

1

b. Roughly 100 squares each is $0.2 \times 400 \times 10^3 = 8 \times 10^4$ J/kg ① Total $\Delta E_k = 100 \times 8 \times 10^4 \times 2$ (mass of meteor) = 1.6×10^7 J ① Energy at surface = ΔE_k + original E_k of meteor = $1.6 \times 10^7 + \frac{1}{2} \times 2 \times 3^2 = 1.6 \times 10^7 + 9$ $\frac{1}{2}$ mv² = 1.6×10^7 \Rightarrow v = $\sqrt{1.6 \times 10^7}$

$$\Rightarrow v = \sqrt{1.6 \times 10^7}$$
$$= 4000 \text{ m/s}$$

Question 13 (8 marks)

Access Education