ACCESS EDUCATION

Access Education

NAME:

PHYSICS Unit 3 & 4 Trial examination 2017

Writing time: 2 hours 30 minutes

QUESTION AND ANSWER BOOK

	Structure of book					
Section	Number of questions	Number of questions to be answered	Number of marks			
А	20	20	20			
В	15	15	110			
		Total	130			

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, pre-written notes (one folded A3 sheet or two A4 sheets bound together by tape) and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of **29** pages
- Formula sheet
- Answer sheet for multiple-choice questions

Instructions

- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION A – Multiple-choice questions

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** or that **best answers** the question. A correct answer scores 1; an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the value of g to be 9.8 m s⁻².

Ouestion 1

The Heisenberg Uncertainity Principle means that for sub atomic particles:

- A. If the position is not known then the momentum must be known.
- B. We cannot be certain of the momentum unless we know the position of the particle.
- C. The momentum must be known if we want to find the position.
- D. Measuring the particles position will change the particles momentum in some way.

Question 2

Jamila is swinging a bucket of water in a vertical circle in a way that none of the water falls out of the bucket at the top of the swing. This is due to:

- A. The tension in Jamila's arm being greater than the weight of the water.
- B. The water being apparently weightless at this point.
- C. The water having no inertia at this point.
- D. Jamila swinging her arm in the same direction as the Earth's rotation.

Question 3

Which of the following will **not** effect the diffraction pattern produced when electrons are fired at a salt crystal?

- A. Changing the speed of the electrons.
- B. Altering the de Broglie wavelength of the electrons.
- C. Changing the type of salt crystal used as the target.
- D. Increasing the intensity of the electron beam.

The following information applies to Questions 4 to 7

A set of 50.0 (\pm 0.5) g masses is used to determine the spring constant of a nylon spring. The length of the spring is measured using a 30 cm ruler with 1 mm graduations. The results are in the table below.

Number of masses added	0	1	2	3	4	5
Spring length (cm)	14.0	17.3	20.1	22.9	25.8	28.9

Question 4

The total mass added to the spring is:

- A. 250 ± 0.5 g
- B. 250 ± 2.5 g
- $C. \quad 250 \pm 3.0 \ g$
- D. 250 ± 0.0 g

Question 5

The ruler used is accurate to:

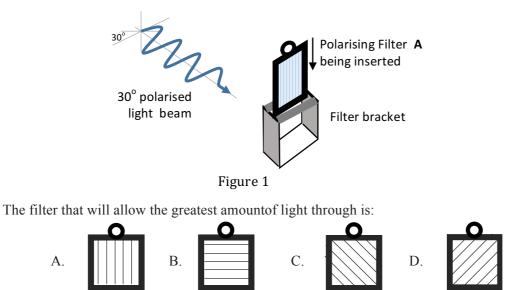
- $A.\ \pm 1\ mm$
- B. ± 0.1 cm
- $C.\ \pm 0.5\ cm$
- $D.\ \pm 0.05\ cm$

Question 6

The uncertainty in the value of the spring constant calculated from this data is referred to as uncertainty:

- A. systematic
- B. relative
- C. random
- D. human

Question 7


The calculated value of the spring constant from this data is:

- A. $16.44 \pm 0.22 \text{ N m}^{-1}$
- B. $16.4 \pm 0.2 \text{ N m}^{-1}$
- C. $16.5 \pm 0.2 \text{ N m}^{-1}$
- D. $16.0 \pm 0.2 \text{ N m}^{-1}$

Access Education

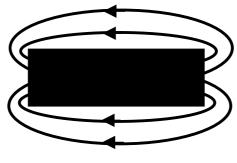

Question 8

Figure 1 shows a beam white light polarised at an angle of 30° to the horizontal being directed towards a bracket which can hold a polarising filter.

Question 9

Students use a compass to trace the field lines around a black box. The field lines traced are shown in Figure 2.

Inside the black box could be:

- A. A magnet with its north pole to the left.
- B. A magnet with its north pole to the right.
- C. A coil with an AC current flowing clockwise.
- D. A coil with an AC current flowing anticlockwise.

Question 10

A 4 kg cannon ball is fired into the air from ground level with an initial velocity of 22 m s⁻¹ at an angle of 40° to the horizontal. Ignoring the effects of air resistance, at its highest point it's kinetic energy is:

- A. 568 JB. 400 J
- C. 284 J
- D. 0 J

Question 11

A spaceship travelling at 80% the speed of light is measured to have a length of 308 m.

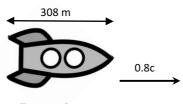


Figure 3

At rest the spaceship would measure closest to:

- A. 185 m
- B. 308 m
- C. 385 m
- D. 513 m

Question 12

An electron is located 4 \times 10⁻³ m from an oxygen ion (O²⁻). The force the electron exerts on the oxygen ion is:

- A. 2.9×10^{-23} N B. 2.7×10^{-4} N C. 1.8×10^{-4} N
- D. $9.0 \times 10^{\text{-5}} \, \text{N}$

Question 13

The results of Young's double slit experiment were considered irrefutable proof that light:

- A. was a particle.
- B. was a wave.
- C. was a wave with particle properties.
- D. was both a wave and a particle.

Question 14

Incandescent light is produced by:

- A. an LED
- B. a laser
- C. the Sun
- D. a synchrotron

Question 15

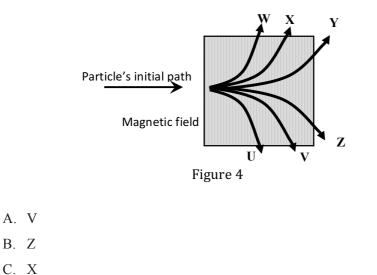
Potassium has a work function of 2.30 eV. When photons of frequency 6×10^{15} Hz strike potassium the maximum kinetic energy of photoelectrons would be closest to:

- A. 2.25 eV
- B. 2.30 eV
- C. 22.5 eV
- D. 225 e V

Question 16

The phenomenom of total internal reflection occurs when light travels:

- A. between any two optical media
- B. between optical media with a difference in refractive indices of more than 0.4
- C. from a medium of higher refractive index to one of lower refractive index
- D. from a medium of lower refractive index to one of higher refractive index


Question 17

When a fire engine approaches you with its siren and lights flashing, the doppler effect occurs:

- A. Only with the sound waves.
- B. Only with the light waves.
- C. With both the sound and light waves.
- D. Only after the ambulance has passed you.

Question 18

An electron and then a proton were fired into a uniform magnetic field. The electron travelled along path X, which path was the proton expected to take?

- С. Л
- D. U

Question 19

Bella and Jin are investigating the relationship between temperature and volume of a gas. They inflate 4 balloons to the same size and then place one in a refrigerator at 4° C, one in a freezer at -7° C, one in a incubator at 60° C and leave the last one in a room thermostatically controlled to remain at 24° C. After 6 hours they meaure the size of the balloons.

The independent variable in this experiment is the:

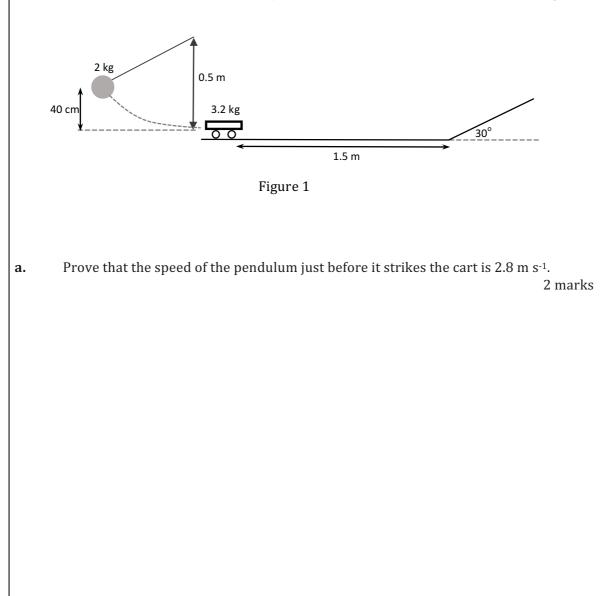
- A. Size of the balloon.
- B. temperature of the rooms.
- C. gas used to fill the balloons.
- D. Type of balloon used.

Question 20

A standing wave can be described as:

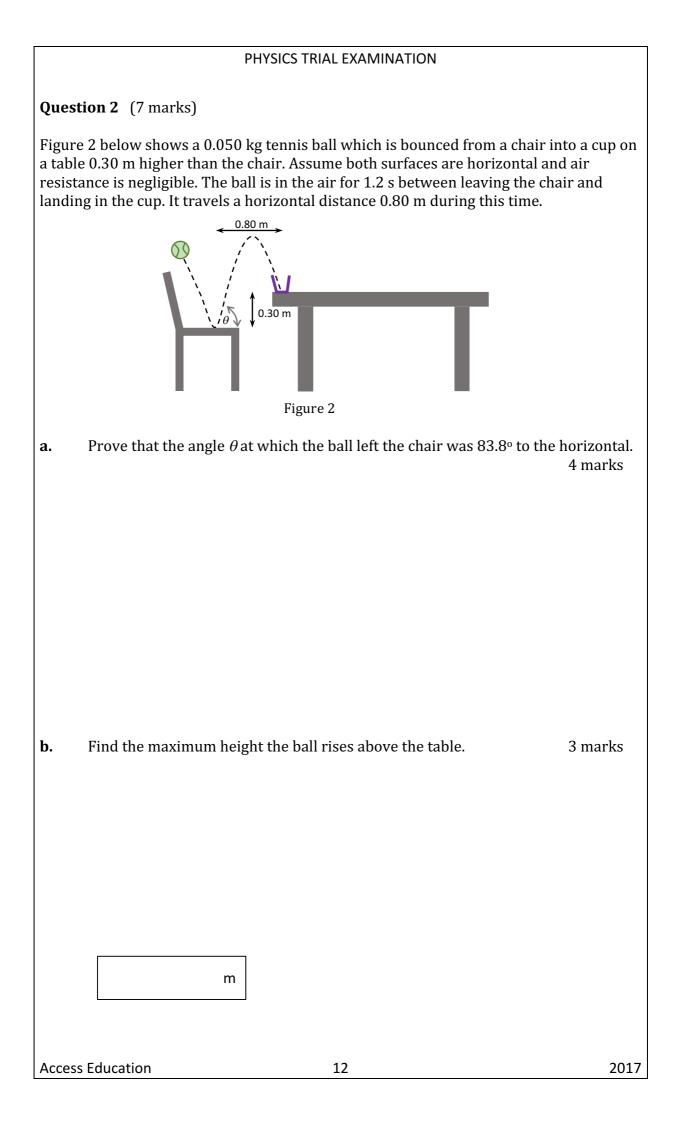
- A. A wave that does not move through a medium.
- B. A wave that is resonating.
- C. A wave that only constructively interferes with itself.
- D. A wave that only destructively interferes with itself.

End of Section A

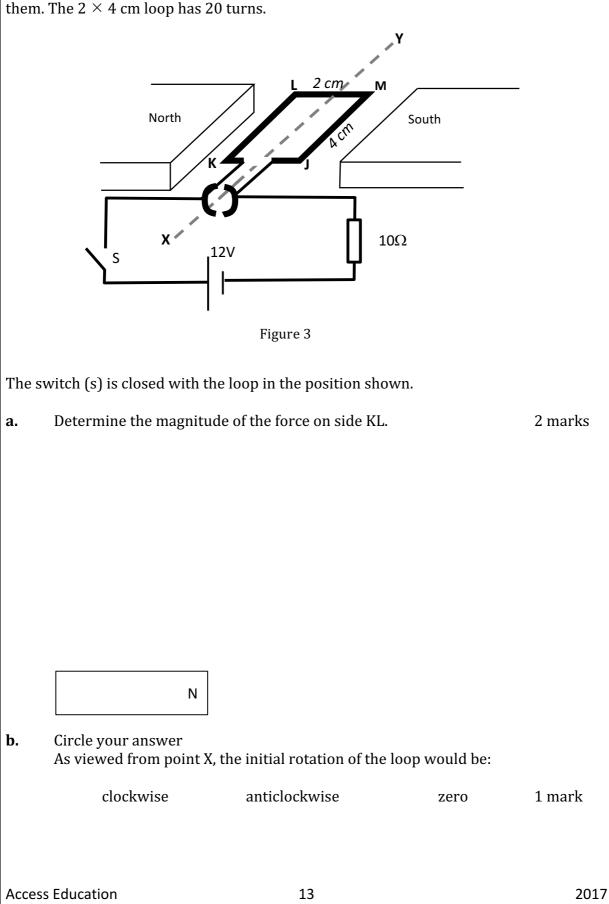

SECTION B

Instructions for Section B

Answer **all** questions in the spaces provided. Write using blue or black pen. Where an answer box is provided, write your final answer in the box. If an answer box has a unit printed in it, give your answer in that unit. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the value of *g* to be 9.8 m s⁻².


Question 1 (13 marks)

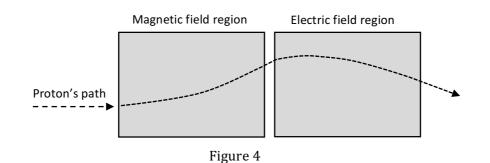
A 2kg pendulum is released from a height of 40 cm. It swings freely until it reaches its lowest point where it collides with a 3.2 kg cart. The cart is on a track assumed to be frictionless. The track is horizontal for 1.5m then slopes upward at 30° to the horizontal as shown in Figure 1.


	PHYSICS TRIAL EXAMINATION
b.	Calculate the tension in the pendulum cable when it is at its lowest point, just before it hits the cart. 2 marks
	Ν
The p	endulum comes to a complete stop when it strikes the cart.
c.	Find the initial speed of the cart.2 marks
	m s ⁻¹
d.	Use calculations to determine if the collision between the pendulum and cart is elastic. 3 marks

	PHYSICS TRIAL EXAMINATION	
e.	Show that the cart's centre of mass should reach a height of 15.6 cm a horizontal track section before rolling back down.	bove the 2 marks
When	tested the cart travels only 1.40 m along the track before stopping.	
f.	Determine the frictional force that the track applies to the cart.	2 marks
	Ν	
Access	Education 11	2017

Question 3 (8 marks)

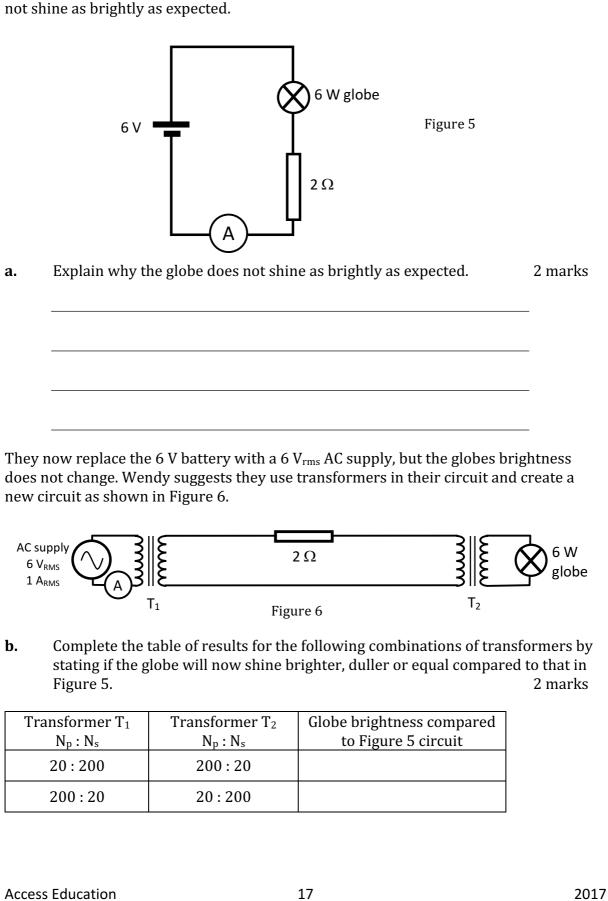
A simple DC motor is constructed as shown in Figure 3. The rectangular loop is free to rotate about the axis XY. The magnets generate a uniform 0.02 T magnetic field between them. The 2 \times 4 cm loop has 20 turns.

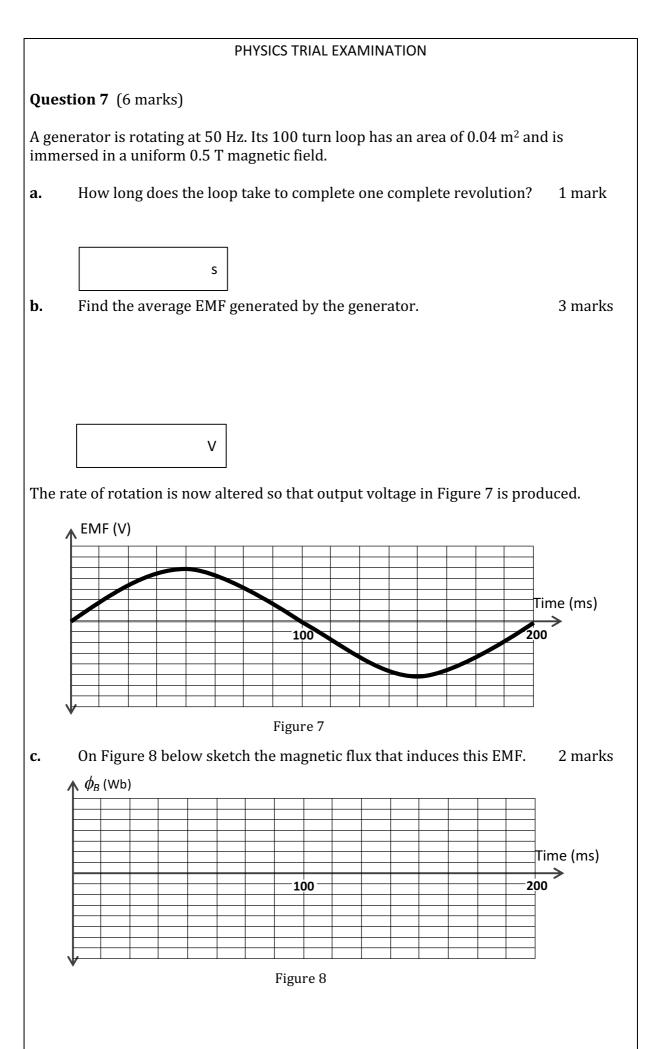


An es		
	sential component of a DC motors is the commutator. in how the commutator operates in this motor.	3 mark
		_
		_
		_
		_
		_
Whicl	h of the following changes would result in an increased rotation	rate? 2 mark
(i)	Increase the area of the loop to 4 $ imes$ 4 cm	
(ii)	Increase the supply voltage	
(iii)	Double the magnetic field strength whilst halving the resistance	ce
(iv)	Halving the number of turns and doubling the supply voltage	

Quest	ion 4 (9 marks)	
An ele	ctron gun is designed to fire horizontal electrons at a speed of 4.6 $ imes$ 10 ⁶ m s ⁻¹ .	
a.	What must be the potential difference across the electric field of the electron gun? 2 marks	
b.	V If the electrons are to continue to travel horizontally after leaving the electron gun determine the magnitude and direction a magnetic field that would achiev this outcome. 3 marks	
C.	TDirection:The beam of electrons are now directed at a crystal and produce a diffraction pattern. Calculate the wavelength of light that would produce an identical pattern? State your answer in nanometres.3 marks	
d.	nm Circle the region of the electromagnetic spectrum this light is from? 1 mark Radiowaves – microwaves – infrared – visible – ultraviolet - X-rays - Gamma rays Education 15 20	017

Question 5 (2 marks)

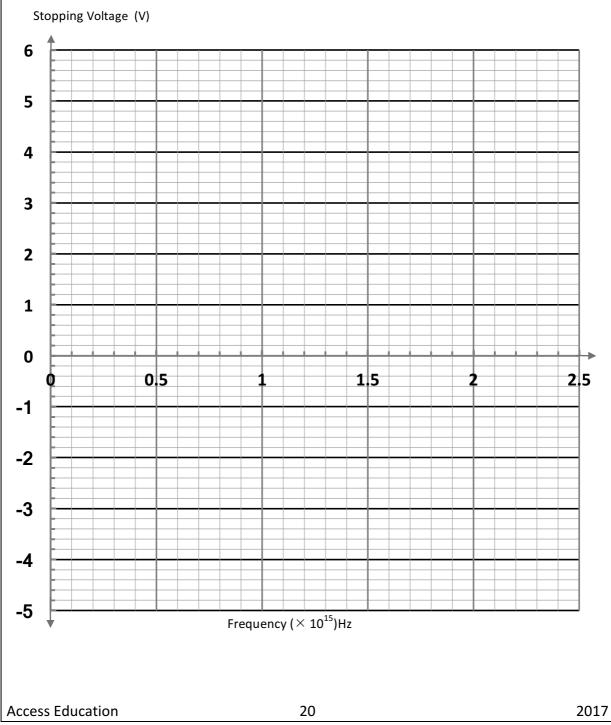

A proton enters a region of space where it passes through a magnetic field and then an electric field (see Figure 4).


In Figure 4 above draw the direction of the field lines in each box that caused the proton to follow the path shown. 2 marks

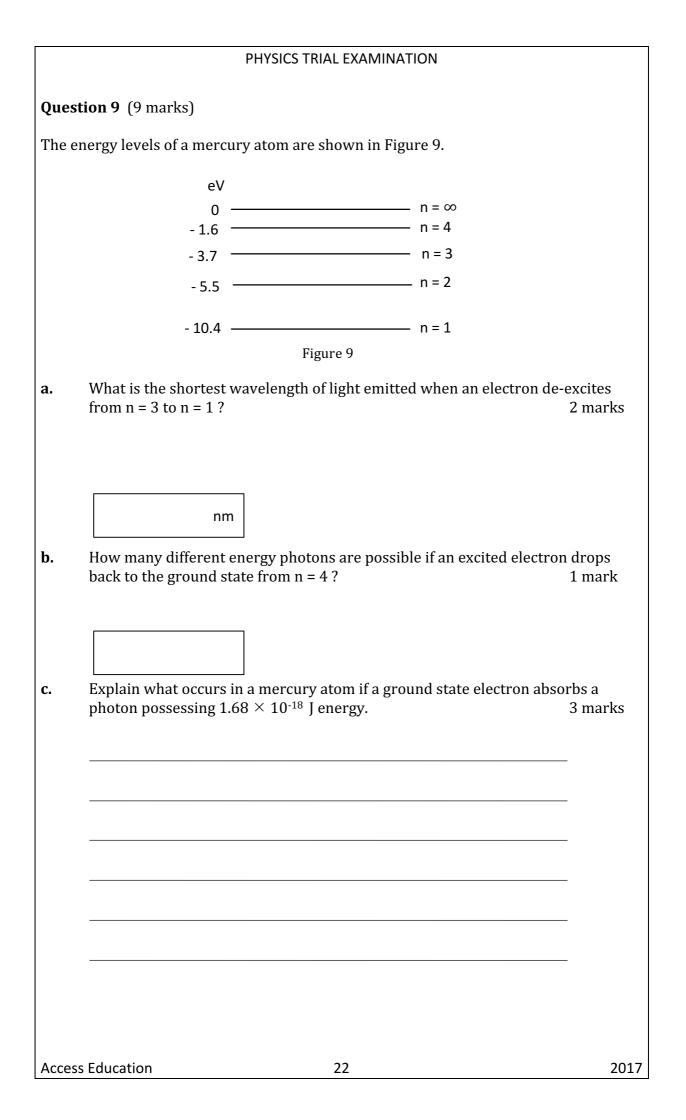
Question 6 (10 marks)

Wendy and Linda are investigating electric circuits. They connect the circuit shown in Figure 5 and record the ammeter reading at 1.0 A. they notice that the 6 W globe does

		PHYSICS TRIAL EXAMINATION	
Assu	ne that the transformers	s are identical and ideal.	
c.	Calculate the minimum	n power loss in the Figure 6 circuit now.	3 marks
	W		
d.	Determine V _{peak} across	the globe in Figure 6 to 2 decimal places.	3 marks
	V		
	<u></u>		
Acces	s Education	18	2017

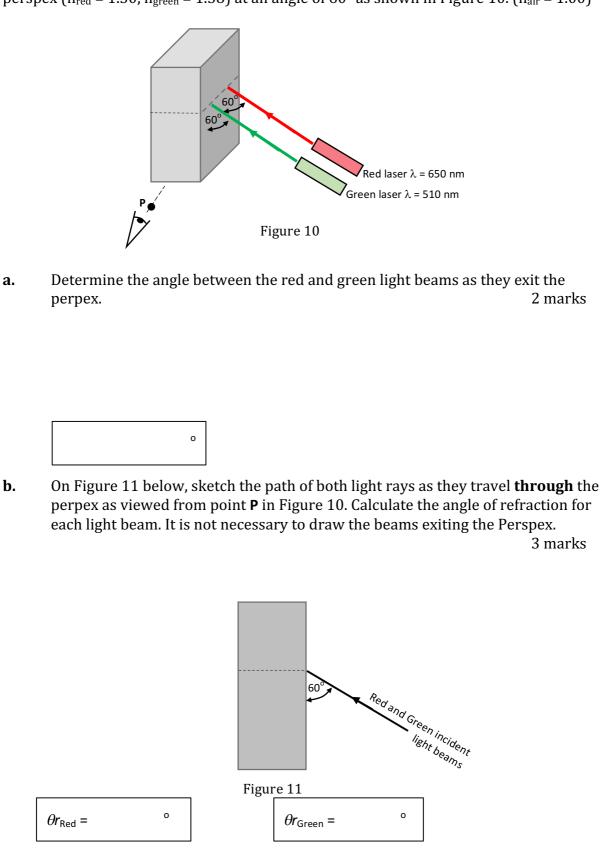


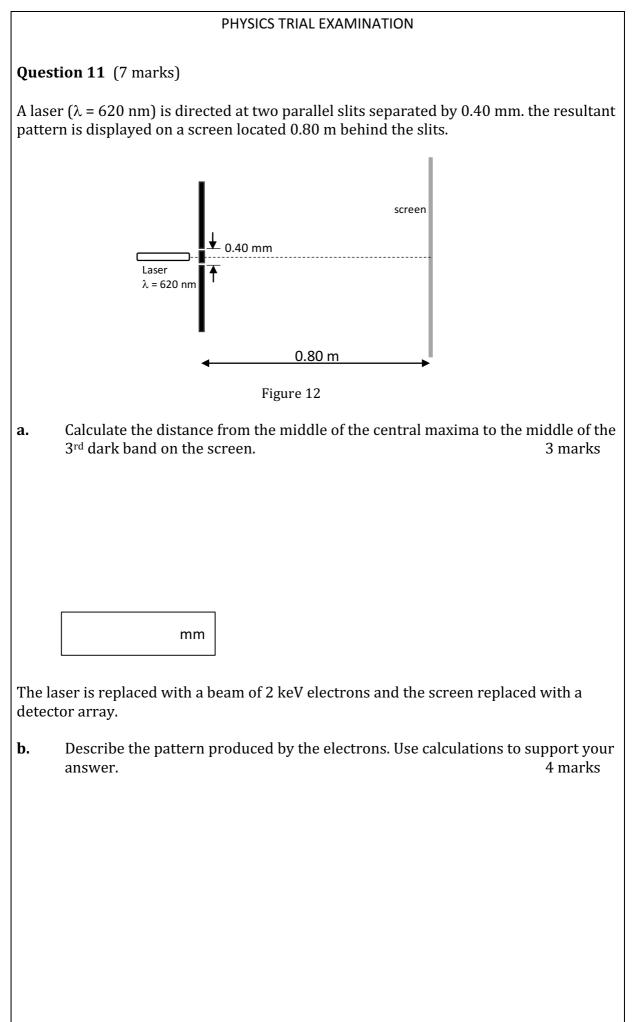
Question 8 (8 marks)

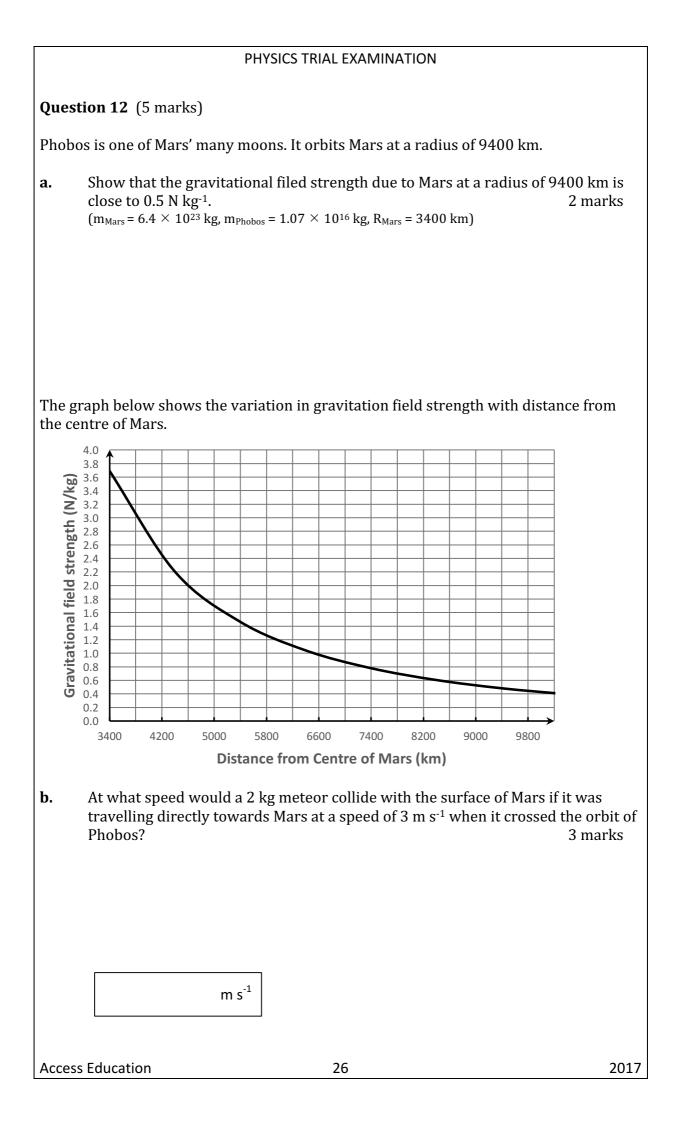

Kelly and Matt are investigating the photoelectric effect using aluminium as their metal cathode. They have tabulated their results including their precision below.

Stopping Voltage <u>+</u> 0.1 volts	Frequency (× 10^{15}) <u>+</u> 0.1 (× 10^{15}) Hz
0.2	1.0
2.5	1.6
4.4	2.0
5.7	2.4

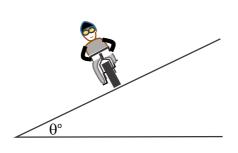
a.Plot the data on the axes provided. Include error bars.2 marks


		PHYSICS TRIA	EXAMINATION		
b.	Calculate the value the precision of you		ant that this data p	provides and de	termine 3 marks
	<u>-</u>	eVs			
C.	Give evidence that not a wave model.	the photoelectric	effect supports a p	particle model f	or light and 3 marks
Acces	s Education		21		2017


PHYSICS TRIAL EXAMINATION					
Use wave pa levels found	rticle duality to ju in atoms.	stify the exis	tence of disc	rete electror	i energy 3 marł

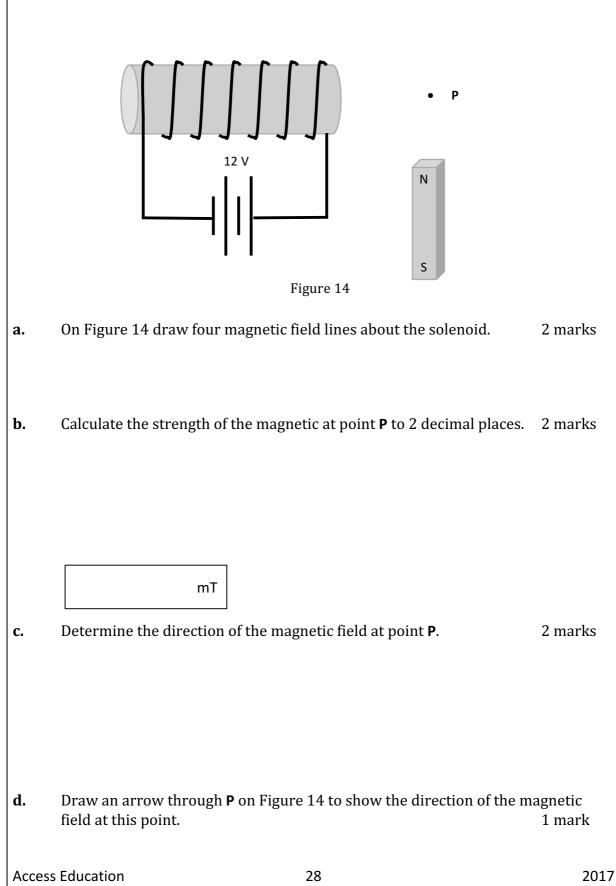

Question 10 (5 marks)

Two monochromatic lasers one red (λ = 650 nm) and one green (λ = 510 nm) direct parallel beams of light toward a horizontal line marked on a thick rectangular prism of perspex (n_{red} = 1.50, n_{green} = 1.58) at an angle of 60° as shown in Figure 10. (n_{air} = 1.00)


2017

Question 13 (8 marks)

A 60 kg cyclist rides at a constant speed of 72 km h⁻¹ around a velodrome. The bends are circular with a radius of 20 m and slope at θ^{0} to the horizontal. Figure 13 shows the cyclist when she is half way around the bend.


a. Find the magnitude of net force acting on the cyclist when she is half way around the bend. 3marks

- **b.** On Figure 13 draw in and label all the forces acting on the cyclist at this time. 2 marks
- **c.** Calculate the angle of the track θ to one decimal place. 3 marks

о

Question 14 (7 marks)

Figure 14 shows a solenoid attached to a 12 V battery. The solenoid produces a 1.00 mT magnetic field at point **P**. Near the solenoid is a bar magnet that produces a 1.73 mT magnetic field at point **P**.

PHYSICS TRIAL EXAMINATION
Question 15 (6 marks)
An electron travelling at 0.9c is approaching a target crystal located 2.400 m away when a timer starts recording.
a. What distance is the target from the electron at this time in the electron's frame of reference? Give your answer to 3 decimal places. 2marks
m
b. How much time in nanoseconds will elapse according to the timer? 2 marks
ns
c. How much kinetic energy does the electron possess just before it reaches the crystal? Give your answer to 2 decimal places. 2 marks
L
Access Education 29 2017