

PHYSICS VCE UNITS 3&4 DIAGNOSTIC TOPIC TESTS 2017

TOTAL 45 MARKS (45 MINUTES)	THOUT CONTACT? (I)
Student's Name:	_ Teacher's Name:
Dire	ctions to students

Write your name and your teacher's name in the spaces provided above. Answer all questions in the spaces provided.

Use $k = 9.0 \times 10^9$ N m² C⁻², $q_e = 1.6 \times 10^{-19}$ C and $m_e = 9.11 \times 10^{-31}$ kg.

Question 1 (8 marks)

Draw eight electric field lines between each of the charged points or planes.

a.

+

2 marks

b.

(-

2 marks

c.

2 marks

d.

2 marks

Question 2 (12 marks)

Draw eight magnetic field lines for each of the diagrams below. Arrows in wires show the direction of the positive current.

 a.
 N
 S
 2 marks

 b.
 N
 S
 N
 3 marks

 c.
 N
 S
 N
 3 marks

 d.
 2 marks

e.

2 marks

Question 3 (4 marks)

Figure 1 shows the electric field around a point charge. A dashed line AB is shown cutting across the electric field.

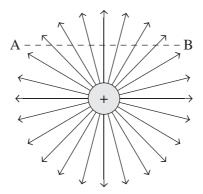


Figure 1

Complete the following sentences by circling the correct option from the choice of three that is given within each set of brackets.

a. As an electric field probe is passed from A to B along the line AB, the electric field direction is **zero** / **static** / **changing** and the magnitude of the electric field is **zero** / **static** / **changing**.

2 marks

b. As an electric field probe is passed from the centre radially outwards, the electric field direction is **constant** / **changing** and the magnitude of the electric field is **zero** / **constant** / **increasing** / **decreasing**.

2 marks

Question 4 (4 marks)

Two electrons are a distance of 1.0×10^{-10} m apart.

a. Determine the electric field strength at the position of one electron due to the other.

2 marks

 $N C^{-1}$

b. Determine the magnitude of the electric force between the electrons.

2 marks

N

otential difference between two plates of distance 2.0 cm is 12.0 V.	
Determine the electric field strength between the two plates.	2 mai
_1	
$N C^{-1}$	
Determine the electric force acting on an electron passing in the region of the electric field.	2 mai
electric field.	2 11181
N	
Determine the work done on an electron if it travels from the negative plate to the positive plate.	2 ma

J

Question 6 (11 marks)

An electron is fired into a region of magnetic field, as shown in Figure 2.

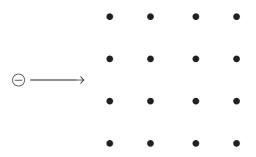


Figure 2

a. Sketch the path of the electron through the magnetic field in Figure 2 and identify the direction of the force at any point chosen by you along the path you sketch.

2 marks

b. If the electron travels at 2.0×10^6 m s⁻¹ and the magnitude of the magnetic field is 0.50 T, determine the size of the force acting on the electron.

2 marks

N

Determine the radius of	of the path followed by the electron.	3
	$\overline{}$	
m		
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ		4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4
Explain how the answ	rers to parts a. , b. and c. would vary if the electron had been fired	4