PHYSICS VCE UNITS 3&4 DIAGNOSTIC TOPIC TESTS 2017

TEST 6: HOW FAST CAN THINGS GO? (III)

SUGGESTED SOLUTIONS AND MARKING SCHEME

Question 1 (2 marks)

The laws of physics are the same in all inertial (at rest or travelling at constant velocity) frames of reference.	1 mark
If a frame of reference travels at a constant velocity relative to a second frame of reference, it cannot be determined as to which is moving, which is stationary, or if both are moving.	
However, the laws of physics will apply to both frames.	1 mark
Question 2 (3 marks)	
Classical physics predicts that the observer measures the speed of light to be c and that the speed of light relative to the spacecraft is $0.7c$.	1 mark
Einstein's theory of special relativity postulates the speed of light to be constant relative to all	
inertial frames of reference and so both the stationary observer and the spacecraft measure the	1 1
speed of light to be c.	1 mark
Special relativity is correct.	1 mark

Special relativity is correct.

Question 3 (4 marks)

a. Lorentz factor =
$$\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

= $\frac{1}{\sqrt{1 - (\frac{1}{3})^2}}$

$$= 1.00$$

<u>1</u> <u>75</u>

1 mark

1 mark Note: 270 km $h^{-1} = \frac{270}{3.6} \text{ m s}^{-1}$ $=75 m s^{-1}$

Neap Diagnostic Topic Tests (DTTs) are licensed to be photocopied and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be placed on the school intranet or otherwise reproduced or distributed. The copyright of Neap DTTs remains with Neap. No DTT or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, publishing agencies or websites without the express written consent of Neap.

b.	Lorentz factor = $\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	
	$=\frac{1}{\sqrt{1-0.97^2}}$	1 mark
	= 4.11	1 mark

Question 4 (8 marks)

- a. These are the time interval and length that are measured by an observer at rest relative to the clock or to the length measured. 1 mark b. When an observer moves past a reference frame in which a time interval occurs, the observer measures the time interval to be longer than that measured in the rest frame. 1 mark When an observer moves past a reference frame in which a length is being measured along the line of motion, the length is measured to be shorter than in the rest frame. 1 mark
- measured time = $\frac{\text{proper time}}{\sqrt{1 \frac{v^2}{2}}}$ c.

$$\sqrt{c^2}$$

ared time = 20 ms 1 mark

measured time = 20 ms

$$20 = \frac{\text{proper time}}{\sqrt{1 - 0.99^2}}$$
 1 mark

proper time =
$$20\sqrt{1-0.99^2}$$

= 2.82 ms 1 mark

d. measured length = proper length
$$\sqrt{1 - \frac{v^2}{c^2}}$$

measured length =
$$200 \times \sqrt{1 - 0.99^2}$$

= 28.21 m 1 mark

Question 5 (3 marks)

a. measured length = proper length
$$\sqrt{1 - \frac{v^2}{c^2}}$$

= $400 \times \sqrt{1 - 0.8^2}$ 1 mark
= 240 m 1 mark

Question 6 (4 marks)

a.	As we observe the muon travelling, its proper time half-life is dilated by the	
	Lorentz factor.	1 mark
	Thus, as distance travelled = speed \times time, its time of travel is greater and so it is expected to travel further in the frame of reference of Earth.	1 mark
b.	In the frame of reference of the muon, distances on Earth are contracted by the Lorentz factor.	1 mark
	is travelled by the muon.	1 mark

Question 7 (12 marks)

a.
$$E = m_0 c^2$$

= 1.67 × 10⁻²⁷ × (3 × 10⁸)² 1 mark
= 1.503 × 10⁻¹⁰ J
1 503 × 10⁻¹⁰

$$=\frac{1.503 \times 10}{1.6 \times 10^{-13}} \text{ MeV}$$
 1 mark

b. mass energy = rest mass energy + kinetic energy

Note: Consequential on answer to Question 7a.

c.
$$E = mc^{2}$$

 $m = \frac{1139.38 \times 1.6 \times 10^{-13}}{(3 \times 10^{8})^{2}}$ 2 marks
 $m = 2.03 \times 10^{-27} \text{ kg}$ 1 mark

Note: Consequential on answer to Question 7b.

$$m = m_0 \times \gamma$$

$$\gamma = \frac{m}{m_0}$$

$$= \frac{2.03 \times 10^{-27}}{1.67 \times 10^{-27}}$$

$$= 1.21$$

1 mark
1 mark
Note: Consequential on answer to Question 7c.

d.

e.	$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$		
	$\therefore 1.21 = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	1 mar	·k
	$\frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}}$		
	$= \sqrt{1 - \left(\frac{1}{1.21}\right)^2}$		
	= 0.56	1 mar	·k

Question 8 (2 marks)

One outcome is that mass and energy are equivalent or interchangeable.	1 mark
$E = mc^2 = m_0 c^2 + E_{\text{kinetic}}$	

Another is that all particles have a rest mass/energy and when they are accelerated and	
receive a kinetic energy, their masses increase according to the above equation.	1 mark

Question 9 (7 marks)

a.	mass of helium + mass of 2 positrons = $6.6438 \times 10^{-27} + 1.8220 \times 10^{-30}$	
	$= 6.6456 \times 10^{-27} \text{ kg}$	1 mark
	This is less than the mass of the 4 hydrogen atoms.	1 mark
	Some of the mass of the 4 hydrogen atoms has been converted to energy.	1 mark
b.	mass difference = $6.6928 \times 10^{-27} - 6.6456 \times 10^{-27}$	
	$=4.72 \times 10^{-29} \text{ kg}$	1 mark
	$E = mc^2$	
	$=\frac{4.72\times10^{-29}\times(3\times10^{8})^{2}}{}$	1 mort

$$1 \text{ mark}$$
 1 mark

Award 1 mark for three significant figures.