Neap.

PHYSICS VCE UNITS 3&4 DIAGNOSTIC TOPIC TESTS 2017

TEST 9: HOW ARE LIGHT AND MATTER SIMILAR? (I)

SUGGESTED SOLUTIONS AND MARKING SCHEME

Question 1 (3 marks)

The wavelengths of visible light are greater than the de Broglie wavelengths of electrons.	1 mark
Thus the $\frac{\text{wavelength}}{\text{distance}}$ ratio (where distance = the length of features on the radiolarian) is	
much less than 0.1 for electrons than it is for visible light given the blurring in image A	
and the sharpness in image B.	1 mark

Thus any bright, dark bands that would be produced for election irradiation of the radiolarian are not visible, resulting in a sharper image than for irradiation of the radiolarian by visible light. 1 mark That is, diffraction effects are not visible when electron irradiation is undertaken.

Question 2 (17 marks)

b.

a. The minimum amount of energy is the work function.

$W = h f_{\rm c}$	
$= 6.63 \times 10^{-34} \times 4.4 \times 10^{+14}$	1 mark
$= 2.9 \times 10^{-19} \text{ J}$	1 mark
OR	
W = y-intercept	
$= 1.8 \times 1.6 \times 10^{-19}$	1 mark
$= 2.9 \times 10^{-19} $ J	1 mark
$E_{\rm Kmax} = q Vs = hf - W$	
$\therefore hf = qVs + W$	
= 1.0 + 1.8	1 mark
= 2.8 eV	1 mark
	Note: Consequential on answer to Question 6a.

Neap Diagnostic Topic Tests (DTTs) are licensed to be photocopied and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be placed on the school intranet or otherwise reproduced or distributed. The copyright of Neap DTTs remains with Neap. No DTT or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, publishing agencies or websites without the express written consent of Neap.

The graph must be solid in the positive energy range and dotted or not drawn in the negative energy range.

$$y$$
-intercept = -4.7 1 mark 4.7

x-intercept =
$$\frac{1}{4.14 \times 10^{-15}}$$

= 1.13×10^{15} Hz
= 11.3×10^{14} Hz 1 mark

Note: 1 mark can also be awarded for the same gradient.

d.	Since 2×10^{14} < (the critical frequency) 4.4×10^{14} ,	1 mark
	to overcome the work function (minimum energy needed).	1 mark
	Thus no electrons are emitted.	1 mark
e.	In the particle model, the number of photons per second is represented by the light intensity.	
	Increasing the light intensity provides more photons for absorption (one per electron).	1 mark
	Hence the photocurrent (number of electrons emitted per second) increases proportionately.	1 mark
	Since the light frequency does not change, each photon still has the same energy and so electrons will be emitted with the same kinetic energy, requiring the same stopping voltage, as shown on the graph as the horizontal	
	axis intercept.	1 mark
f.	The wave model predicts that light of all colours should stimulate electrons to be emitted and that the energy of the electrons is independent of the colour.	1 mark 1 mark
	The energy of the emitted electrons depends on the frequency of light used, evident from the unique stopping voltage for each colour of light.	1 mark
	Colours whose frequency are not great enough (red in this case) will not stimulate	
	electron emission.	1 mark

1 mark

Question 3 (7 marks)

a.
$$E_{\rm K} = qV$$

 $= 1.6 \times 10^{-19} \times 1000$
 $= 1.6 \times 10^{-16} \,\text{J}$ 1 mark
 $= \frac{1.6 \times 10^{-16}}{1.6 \times 10^{-16}}$
 $= 1.0 \,\text{eV}$ 1 mark

b.
$$\frac{p^{2}}{2m} = E_{K}$$

$$p = \sqrt{2mE_{K}}$$

$$p = \sqrt{2 \times 9.11 \times 10^{-31} \times 1.6 \times 10^{-16}}$$

$$= \sqrt{2.92 \times 10^{-46}}$$

$$= 1.7 \times 10^{-23} \text{ Ns}$$

$$1 \text{ mark}$$

c.
$$\lambda = \frac{h}{p}$$

 $= \frac{6.63 \times 10^{-34}}{1.7 \times 10^{-23}}$ 1 mark
 $= 3.88 \times 10^{-11}$ m 1 mark

Note: Consequential on answer to Question 7b.

Note: Consequential on answer to Question 7a.

Question 4 (7 marks)

a.
$$\lambda = \frac{h}{\sqrt{2mqV}}$$
 since $p = \sqrt{2mqV}$ 1 mark

$$= \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 1.6 \times 10^{-19} \times 30}}$$
1 mark
= 2.24 × 10⁻¹⁰ m 1 mark

b. Since the ratio
$$\frac{\text{de Broglie wavelength}}{\text{gap width}} = \frac{2.24 \times 10^{-10}}{0.135 \times 10^{-9}}$$

= 1.66 2 marks
1 mark for gap width in m.

1 mark for correct answer.

the ratio is greater than 1, indicating that the electron will diffract through the spacing. 1 mark Thus the electron will behave as a wave. 1 mark **Question 5** (6 marks)

a.
$$p = \frac{h}{\lambda}$$

= $\frac{6.63 \times 10^{-34}}{600 \times 10^{-9}}$ 1 mark
= 1.11×10^{-27} Ns 1 mark

b. Since the electron and the photon have the same equation for momentum based on wavelength.

Thus
$$p = 1.11 \times 10^{-27}$$
 Ns. 1 mark

Note: Consequential on answer to Question 5a.

1 mark

c. $E_{\text{photon}} = h \times f$

$$= \frac{h \times c}{\lambda}$$

= $p \times c$
= $3.0 \times 10^{-27} \times 3 \times 10^{8}$
= $9.0 \times 10^{-19} \text{ J}$ 1 mark
= $\frac{9.0 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV}$
= 5.6 eV 1 mark

Question 6 (5 marks)

a.	The electrons have wave-like properties. This is evident from the bright and dark bands present which can only be explained by	1 mark
	interference of electrons.	1 mark
b.	Given the identical positions of bright and dark bands,	1 mark
	the wavelength of the X-rays and the de Broglie wavelength of the electrons are the same.	1 mark
	Since momentum = $\frac{h}{wavelength}$, then the X-ray photons have the same momentum as	
	the electrons.	1 mark