

PHYSICS Unit 1 – Written examination

Reading time: 15 minutes Writing time: 1 hour and 30 minutes

QUESTION & ANSWER BOOK

Structure	of	book	

Section	Number of questions	Number of questions to be answered	Number of marks
А	20	20	20
В	12	12	70
			Total 90

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- A scientific calculator is permitted in this examination.
- Students are permitted to bring in an A4 page of notes

Materials supplied

• Question and answer book of 25 pages.

Instructions

• Print your name in the space provided on the top of this page.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

SECTION A - Multiple-choice questions

Instructions for Section A

Section A consists of 20 multiple-choice questions. Choose the response that is **correct** or that **best answers** the question. Write the letter corresponding to your chosen answer in the box at the end of each question.

- A correct answer is worth 1 mark, an incorrect answer scores 0.
- Marks will **not** be deducted for incorrect answers.
- No marks will be given if more than one answer is given for any question

Question 1

When two bodies are in thermal equilibrium with a third body, then they will be in thermal: equilibrium with themselves. This is called

- **A.** The law of thermodynamics.
- **B.** The zeroth law of thermodynamics.
- **C.** The first law of thermodynamics.
- **D.** The law of thermal equilibrium.

Question 2

If a system has undergone no change in internal energy during a process, then it can be assumed that,

- A. No work was done on the system.
- **B.** No work was done by the system.
- C. The heat gained by the system was equal to the work done by the system.
- **D.** The heat gained by the system was less than the work done by the system.

Question 3

A 0.2 kg piece of metal at 41.76 °C is added to 60 grams of water at 24 °C, the temperature of the water rises to 31.40 °C. The specific heat capacity of the metal is (Specific heat capacity of the specific heat capacity of the metal)

(Specific heat capacity of water 4200 J kg⁻¹ C⁻¹)

- **A.** 900 000 J kg⁻¹ C⁻¹
- **B.** 52559 J kg⁻¹ C⁻¹
- **C.** 900 J kg⁻¹ C⁻¹
- **D.** 525.59 J kg⁻¹ C⁻¹

SECTION A- continued

Question 4

Particles in a liquid are usually

- A. Closer together and lower in energy than in a gas
- **B.** Further apart and lower in energy than in a gas
- C. Closer together and lower in energy than in a solid
- **D.** Further apart and lower in energy than in a solid

Question 5

100 grams of water at 75°C is added to 50 grams of ice at 0°C. What is the final temperature of the mixture? (*Specific heat capacity of water* 4200 J kg⁻¹ °C⁻¹, *specific heat capacity of ice* 2100 J kg⁻¹ °C⁻¹, *latent heat of fusion of water* 3.34×10^5 J kg⁻¹)

- **A.** 0 °C
- **B.** 23.49 °C
- **C.** 37.5 °C
- **D.** 70.48

Question 6

During convection, heat is transferred via

- A. Collisions of particles.
- B. Movement of fluid.
- C. Via electromagnetic radiation.
- **D.** No heat is transferred.

Question 7

The gases that contribute to the enhanced greenhouse effect in order of most to least significant are

- A. Water vapour, carbon dioxide, methane, nitrous oxide.
- B. Carbon dioxide, water vapour, methane, nitrogen.
- C. Water vapour, carbon dioxide, nitrogen, oxygen.
- D. Carbon dioxide, methane, nitrogen, oxygen.

SECTION A- continued TURN OVER

Question 8

A circuit has a current of 10 mA following through it. How many electrons will move through the circuit in one minute?

- A. 3.75×10^{18}
- **B.** 3.75×10^{21}
- C. 6.25×10^{16}
- **D.** 6.25×10^{19}

Question 9

The voltage divider circuit shown in Figure 1 consists of a 9 V battery, a 100 Ω resistor and an unknown resistor.

Figure 1

If the voltage dropped across the unknown resistor is 5 V, its value is equal to:

- **A.** 80 Ω
- **B.** 100 Ω
- **C.** 125 Ω
- **D.** 55.5 Ω

SECTION A- continued

Question 10

All of the following units are equivalent to watts except:

- **A.** $Amp^2 \times Ohm$
- **B.** $Volt^2 \div Ohm$
- **C.** Joule ÷ Second
- **D.** Volt \div Amp

Question 11

The resistance of both a thermistor and light dependent resistor (LDR) are variable. Which of the following combinations provides the highest resistance for both the thermistor and the LDR.

	Thermistor	LDR
А.	High temperature	High illumination
B.	High temperature	Low illumination
C.	Low temperature	High illumination
D.	Low temperature	Low illumination

The following information refers to Questions 12 and 13

A 10 Ω , a 15 Ω and a 25 Ω resistor are placed together in series with a 9 volt battery.

Question 12

The total resistance of the circuit is:

- **A.** 4.83 Ω
- **B.** 19.38 Ω
- C. 31.25Ω
- **D.** 50 Ω

Question 13

The voltage dropped across the 15 Ω resistor is equivalent to:

- **A.** 2.7 V
- **B.** 1.8 V
- **C.** 4.84 V
- **D.** 9 V

SECTION A- continued TURN OVER

Question 14

A circuit requires a total resistance of 475 Ω , however the only resistors available are a 25 Ω , 2 × 150 Ω and 2 × 750 Ω . Using some or all of the resistors how could this be achieved?

- **A.** It is not possible
- **B.** All resistors in series
- C. 2 × 150 in parallel, 2 × 750 in parallel and these two combinations in series with 25 Ω
- **D.** 2 \times 750 in parallel in series with 150 Ω

Question 15

When ${}^{226}_{88}Ra$ undergoes α decay it will form:

- A. $^{230}_{92}U$
- **B.** $^{226}_{89}Ac$
- C. $^{222}_{86}Rn$
- **D.** $^{222}_{87}Fr$

Question 16

The amount of energy required to disassemble a system of particles into its separate parts is called its:

- A. Atomic energy
- **B.** Binding energy
- C. Nuclear energy
- **D.** Radioactive energy

Question 17

In an experiment, a physicist measured a sample of material. Initially, it measured 1200 grams, when he reweighed it, it measured 75 grams. If it had a half-life of 12 minutes, the time between the two measurements was equal to:

- **A.** 96 minutes
- **B.** 48 minutes
- C. 24 minutes
- **D.** 12 minutes

SECTION A- continued

Question 18

Cosmic background radiation is:

- A. Radiation from a galaxy that is redshifted
- **B.** Radiation from the sun
- C. Radiation that was formed when electrons and protons combined during the Big Bang
- **D.** Radiation that is continually produced in the atmosphere

Question 19

An uncharged atom of Beryllium has 4 protons and 5 neutrons. The atom has a total of:

- **A.** 9 quarks and 4 leptons
- **B.** 27 quarks and 4 leptons
- **C.** 27 quarks and 9 leptons
- **D.** 9 quarks and 9 leptons

Question 20

Which of the following particles is not a fermion?

- A. Neutron
- **B.** Proton
- C. Photon
- **D.** Quark

END OF SECTION A TURN OVER

SECTION B - Short-answer questions

Instructions

Answer all questions in all sections in the spaces provided.

Where an answer box has a unit printed in it, give your answer in that unit.

You should take the value of g to be 9.8 m s⁻².

Where answer boxes are provided, write your final answer in the box.

In questions worth more than 1 mark, appropriate working should be shown.

Unless otherwise indicated, diagrams are nor to scale.

Question 1 ((5 marks)

Annie and Jo are investigating a thermodynamic system. In the first stage, the system does 25 J of work and has an increase internal energy by 8 J.

Jo says energy has been released from the system while Annie disagrees and says the system is absorbing energy.

a. Find the amount of heat either added to or released from the system in this stage, and hence state who is correct.

3 marks

In the second stage, the system absorbs 15 J of heat and has 21 J of work done on it.

b. Calculate the total change in the internal energy of the system during both stages.

J

2 marks

SECTION B- continued

Question 2 (8 marks)

Energy is being supplied to a 250 gram block of ice, initially at -12 °C at a rate of 300 W for 10 minutes.

(Specific heat capacity of water 4200 J kg⁻¹ °C⁻¹, specific heat capacity of ice 2100 J kg⁻¹ °C⁻¹, latent heat of fusion of water 3.34×10^5 J kg⁻¹).

a. How much energy is required to melt the ice block?

b. Calculate the time taken for the ice to melt.

SECTION B- Question 2 – continued TURN OVER

c. On the graph below, draw a temperature versus time (minutes) graph showing the time required for the water to reach 50 °C and state the total time in the box below.

S

3 marks

SECTION B- continued

Question 3 (3 marks)

A block of ice of unknown mass initially at -15 °C is added to a 500 gram sample of water at 70 °C. If the final temperature of the mixture is 29 °C, how much ice has been added? (Specific heat capacity of water 4200 J kg⁻¹ °C⁻¹, specific heat capacity of ice 2100 J kg⁻¹ °C⁻¹, latent heat of fusion of water 3.34 × 10⁵ J kg⁻¹)

Question 4 (3 marks)

Figure 2 shows a saucepan sitting on a gas stove which contains an egg.

Outline the energy transfers in order to create a hardboiled egg.

SECTION B- continued TURN OVER

Question 5 (4 marks)

Without the greenhouse effect, Earth would be significantly different to the way we currently know it.

a. What is the greenhouse effect?

2 marks

b. Why are scientists now worried about the greenhouse effect?

2 marks

SECTION B- continued

Question 6 (7 marks)

A set of 10 Christmas lights shown in Figure 3 are connected in series to a 240 V power supply.

a. What is the power dissipated in each globe?

W

С

3 marks

b. If the globes are left on for 2 hours, how much charge flows through each globe?

2 marks

c. What energy does each globe use if it is left on for this time period?

J 2 marks SECTION B- continued

TURN OVER

Question 7 (9 marks)

Elliot and Gaby are performing an experiment to verify Ohm's law using two different resistors. They set up a simple series circuit using one resistor at a time with a variable power supply. They then use a multimeter to measure the voltage across and current through each resistor.

The results Elliot and Gaby obtained are shown in Table 1.

Re	Resistor A		Resistor B			
Voltage (V)	Current (mA)	Voltage (V)	Current (mA)			
0	0	0	0			
1	2.5	1	0.5			
2	5	2	1.9			
2.5	6.3	2.5	2.8			
3.8	9.4	3.8	6			
4.4	11	4.4	11			

a. On the axes below sketch graphs for both Resistor A and Resistor B. Label the graph appropriately.

³ marks

SECTION B- Question 7 - continued

b. Which of Elliot and Gaby's resistors is Ohmic? Explain your answer.

2 marks

c. Calculate the resistance of the Ohmic resistor.

d. With the non-ohmic resistor in place in the series circuit, calculate the power dissipated across it when the voltage is measured at 3.5 V.

mW

2 marks

SECTION B- continued TURN OVER

Question 8 (8 marks)

Students investigating combination circuits set up the circuit shown in Figure 4.

a. What is the effective resistance of this circuit?

3 marks Δ b. Calculate the current supplied by the battery.

A 2 marks

SECTION B- Question 8 - continued

c. What is the voltage drop across the 2.5 Ω resistor?

V

3 marks

Question 9 (6 marks)

Oliver and Charlotte are investigating the workings of a thermistor. They complete an experiment to determine the resistance across the thermistor at a variety of different temperatures and their results are shown in a temperature vs resistance graph in Figure 5.

Figure 5

Temperature (°C)

SECTION B- Question 9 – continued TURN OVER a. What was the resistance of the thermistor when Charlotte and Oliver recorded the temperature as 30 °C?

Charlotte and Oliver then place their thermistor into a circuit used to control an air conditioner as shown in Figure 6.

They design the circuit so the air conditioner switch, which is across the variable resistor, switches ON when the input across it reaches 8 V and OFF when it is below this.

b. If the air conditioner is designed to switch on at 30 °C, what value should the variable resistor be set to?

SECTION B- Question 9 - continued

c. Charlotte and Oliver decide they actually want the air conditioner to switch on at a lower temperature. Should they increase or decrease the value of the variable resistor to achieve this? Explain your answer.

3 marks

Question 10 (7 marks)

Iodine-131 (I-131) is a radioactive isotope used for medical purposes, particularly in treating a condition of the thyroid called hyperthyroidism.

I-131 is known to decay via beta emission. (β^{-}).

a. Explain how a beta particle is ejected from the nucleus of an atom.

2 marks

b. Write a balanced equation to show the decay of I-131.

2 marks

SECTION B- Question 10 – continued TURN OVER

Figure 6 shows the disintegrations per minute of I-131 versus time in hours.

c. Using Figure 5 what is the half-life of I-131?

l mark

A patient in a remote location needs to be given a dose of I-131 with an activity of 0.75 MBq to treat their condition. The hospital where it is produced is located a significant distance away and there is a turnaround time of 32 hours in between producing the drug and the patient receiving it.

d. What should be the minimum activity of the I-131 at the time it is produced to ensure that the patient receives the dose at the correct activity?

Question 11 (4 marks)

Scientists believe that the Big Bang theory is the correct theory in relation to the beginning of the universe. They were able to reach this conclusion using the Doppler Effect.

a. What is the Doppler Effect?

2 marks

2 marks

b. What is the Big Bang theory and how does the Doppler Effect provide the evidence to support it?

Question 12 (6 marks)

The standard model is a model scientists use to describe the role of fundamental particles and the interactions between them.

a. What are fundamental particles?

2 marks

b. What is the difference between a fermion and a boson?

2 marks

SECTION B- Question 12 – continued TURN OVER

- c. Show the combination and charge of the quarks required to produce a
 - i. Neutron?

1 mark

ii. Proton?

1 mark

END OF QUESTION AND ANSWER BOOK

Formula and Data Sheet

First Law of Thermodynamics	Q = U + W
Wien's Law:	$\lambda_{\rm max}T = 2.898 \times 10^{-3} \text{ m K}$
Power radiated per unit surface area: (Stefan-Boltzmann Law)	$R = \sigma T^4$ $\sigma = 5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
Heat capacity:	$Q = mc\Delta T$
Latent heat:	Q = mL
Charge on an electron	$1.6 \times 10^{-19} C$
Electrical charge	Q = It
Electrical work	W = QV
Voltage	V = IR
Power	P = VI
Resistors in series	$R_{TOTAL} = R_1 + R_2 + \dots + R_n$
Resistors in parallel	$\frac{1}{R_{TOTAL}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

Prefixes/Units

$p = pico = 10^{-12}$	$n = nano = 10^{-9}$	$\mu = \text{micro} = 10^{-6}$	$m = milli = 10^{-3}$
$k = kilo = 10^3$	$M = mega = 10^6$	$G = giga = 10^9$	$t = tonne = 10^3 kg$

Hettum 2 Hetta	NG 10	20.180 18 A r	39.948 wypłon 36	Υ Σ ε	S4	Ae 131.29	86			
	o TT	18.998 chlorine 17	35.453 bromine 35	Br	53	126.90	astatine 85	AL		
	oxygen 8 0	15.999 Suftur 16	32 065 elénium 1 34	Se	elurtum 52	127.60	84 minut	0		
	nitrogen 7	14.007 00sphorus 15	30.974 arsenic 33	As	51 51	30 121.76		2 0.98		
	C e carton	12.011 sticon 14 Ni	28.085 Dermanium 32	Ge	≣ 8 (1/8/1	5 83 g	207.2 207.2	114	bnc
	n ∘ n	aumhium 13 AI	26.982 gaffum 31	Ga	hdtum 49	14.82	mullou	204.38		
			2mc 30	Zu	48	112.41	80	D 23	112	ann
			copper 29	Cu 8566	47	Ag	79	Au	111	nnn
			nickel 28	Z 8003	palladhum	7 106.42	78 18	Z 80.861	110	unn
			cobalt 27	ပီး	45	P 102.01		192.22	109	INI
			ion 26	Fe ⁶⁸⁶⁵	attenium 4	1 0.101	26 C	2 S S	108	SH I
			manganese 25	Nn Bn	43	ບ <u>ສ</u>	12 Z	Re 186.21	107	
			chromium 24	ບ ເ	42	110 95,94	74	183.84	106	D
			vanadkm 23	S0.942	41 41	000 82.906		180.95	105	
			Blankim 22	H	zkoontum 40	1 24	72	178.49	104 T	
			scandum 21	Sc	yttrhum	88,906	71	174.97	103	
							57-70	ĸ	89-102	*
	Beryllikun 4 BC	agneshim 12 NG	24.305 caldum 20	Ca	ationthum 38	N 87.62	8 C	D a 13/33	8	
hydrogen t 0079	unium a	sodium 11	22.990 otassium	× 80.05	a7	85.468	55	132.91	87	EZZ)

	ianthanum	certum	peaseodymium	meodymium	promethium	samarium	europhum	gadolinkum	terbium	dysprosium	holmhum	erbium	thulium	ytterbium
* anthanida cariac	57	28	59	60	61	62	63	64	65	99	67	89	69	70
	La	Se	Ъ	Nd	Pm	Sm	Eu	Gd	Tb	D	Ч	ш	Tm	Υb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactiniam	urantum	neptunium	plutonium	arriencium	curtum	berkellum	calfornium.	einsteihium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	66	100	101	102
	Ac	Ч	Pa		dN	Pu	Am	Cm	푗	Ç	Es	Fa	Md	٩N
	1227	232.04	231.04	238.03	12371	12:441	12.430	12471	12471	12511	12521	12571	12580	1250

Periodic Table of the Elements

SECTION A MULTIPLE CHOICE ANSWER SHEET

Question		Ans	wer	
1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D
11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D

Answers – Circle ONE of A-D for each of the 20 multiple choice questions.