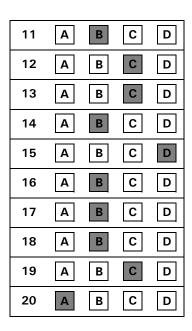
Neap

Trial Examination 2020


VCE Physics Units 1&2

Written Examination

Suggested Solutions

SECTION A - MULTIPLE-CHOICE QUESTIONS

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Question 1

The metal spoon is a solid, so the main method of heat transfer in the spoon is conduction.

Question 2

 $\Delta Q_{\text{water}} = \Delta Q_{\text{aluminium}}$ 5.0 × 4200 (T - 20°C) = 1.0 × 880(90 - T) 21 000T - 420 000 = 79 200 - 880T 21 880T = 499 200 T = 22.82°C T = 23°C

Α

B

B

Question 3

$$Q = ml_{\rm f}$$

= 0.00400 × 1.05 × 10⁵
= 420 J

Question 4 C

Hotter objects emit most of their radiation at shorter wavelengths. Shorter wavelengths have more energy and higher frequency than longer wavelengths; therefore, hotter objects will appear more blue than cooler objects.

Question 5 B

$$V = \frac{E}{Q}$$
$$= \frac{4.5}{3.0}$$
$$= 1.5 \text{ V}$$

Question 6 C

 $150 + 150 = 300 \ \Omega$ (bottom of branch for parallel component) resistance of parallel component of combined circuit:

$$\frac{1}{R_{\text{total}}} = \frac{1}{300} + \frac{1}{150}$$
$$R_T = 100 \ \Omega$$

total resistance of combined circuit:

 $R_{\rm effective} = 100 + 150 = 250 \ \Omega$

Question 7 B

3.0 V across the LED leaves 2.0 V across the 100 Ω resistor.

V = IR2.0 = 1 × 100 = 0.02 A = 20 mA

Question 8 B

 α decay: mass number decreases by 4; atomic number decreases by 2 β^- decay: no change to mass number; atomic number increases by 1

Question 9 D

 $^{27}_{13}\text{Al} + X \rightarrow ^{27}_{12}\text{Mg} + ^{1}_{1}\text{H}$

27 + 1 = 27 + 1 (Mass numbers are equal on both sides of the equation.)

13 + 0 = 12 + 1 (Atomic numbers are equal on both sides of the equation.)

Question 10

С

С

The four observed fundamental forces are the weak nuclear force, strong nuclear force, electromagnetic force and gravitational force. Dark matter force is not an observed fundamental force because it is a theory.

Question 11 B

Displacement is the shortest distance from an initial position to a final position (in this case, the distance from point X to point Z). Therefore, displacement is 9.0 km.

Question 12

Taking right as positive:

u = 2.0 v = -4.0 t = 2.0 a = ? v = u + at -4.0 = 2.0 + 2.0a $a = -3.0 \text{ m s}^{-2}$

The acceleration is 3.0 m s^{-2} to the left.

Question 13 C

time to top:

v = u + at 0.0 = 9.8 - 9.8tt = 1.0 s

distance to top:

$$v^{2} = u^{2} + 2as$$

 $0 = 9.8^{2} + 19.8s$
 $s = 4.9 \text{ m}$

time to bottom:

 $(9.8 + 4.9) = 0 + 4.9t^2$

$$t = 1.7 \text{ s}$$

total time of flight:

$$t = 1.0 + 1.7$$

= 2.7 s

Question 14 B

 $F_{net} = 0 N$ W - f = 0 $f = 60 \times 9.8$ = 588 N

Question 15 D

In this graph of velocity versus time, the gradient is constant; $F_{net} = ma$, so F_{net} is constant.

Question 16

 $E_{\rm k} = \frac{1}{2} \times 0.0459 \times (70.0)^2 = 112 \text{ J}$

B

B

Question 17

loss in gravitational potential energy = gain in kinetic energy $m \times 9.8 \times 15.2$: $m \times 9.8 \times (76.0 - 15.2)$ 15.0 : 60.8 1 : 4

Question 18 B

 $\tau_{\text{anticlockwise}} = \tau_{\text{clockwise}}$ $40.0 \times 9.8 \times 0.5 = 5.0 \times 9.8 \times 0.25 + F_{\text{Hannah}} \times 1.0$ $F_{\text{Hannah}} = 184 \text{ N m}$

Question 19 C

$$F_{\text{one wire}} = \frac{10 \times 9.8}{2 \cos 30}$$
$$= 57 \text{ N}$$

Question 20 A

The scenario in \mathbf{A} is not accurate as the darts are far from the true value (the bullseye), but it is precise as the darts are close together.

SECTION B

Question 1 (3 marks)	
A human has a greater average kinetic energy than the swimming pool water	1 mark
because they have a higher average temperature.	1 mark
The swimming pool water has a greater total kinetic energy than a human because	
it has a greater volume of particles than the human.	1 mark
Note: For full marks, students must differenti	
average kinetic energy and total kin	etic energy.

Question 2 (5 marks)

a.	The substance changes state from a liquid to a solid.	1 mark
b.	$Q = m l_{\rm fusion}$	
	$300\ 000 = 0.20 \times l_{\text{fusion}}$ $l_{\text{fusion}} = 1\ 500\ 000\ \text{J}\ \text{kg}^{-1}$	1 mark 1 mark
c.	$Q = mc\Delta T$	
	$100\ 000 = 0.2 \times c \times (90 - 70)$	1 mark
	$c = 25000 \text{ J kg}^{-1} \text{K}^{-1}$	1 mark
Ques	tion 3 (4 marks)	
a.	Step 1:	
	$\Delta U = Q - W$	
	= 70 - (-35)	
	= 105 J	1 mark
	Step 2:	
	$\Delta U = Q - W$	
	= 35 - 70	
	= -35 J	1 mark
	Overall:	
	$\Delta U = Q - W$	
	= 105 - 35	
	= 70 J	1 mark
b.	increase	1 mark

Question 4 (2 marks)

$$\lambda_{\max} = \frac{0.0028}{3900}$$

= 7.2 × 10⁻⁷
= 720 nm 1 mark

Question 5 (4 marks)

a.	The greenhouse gases absorb the infrared radiation emitted by Earth and re-emit it in all directions, heating up both Earth's atmosphere and Earth itself, therefore making Earth warm enough to sustain life.	1 mark
	The infrared radiation emitted by Earth would radiate straight out of Earth's atmosphere if there were no greenhouse gases in the atmosphere.	1 mark
b.	Human activities such as burning fossil fuels increase the amount of greenhouse gases released in the atmosphere.	1 mark
	The increase in greenhouse gases in the atmosphere results in extra heat being trapped, causing Earth's temperature to rise, which contributes to the enhanced greenhouse effect.	1 mark

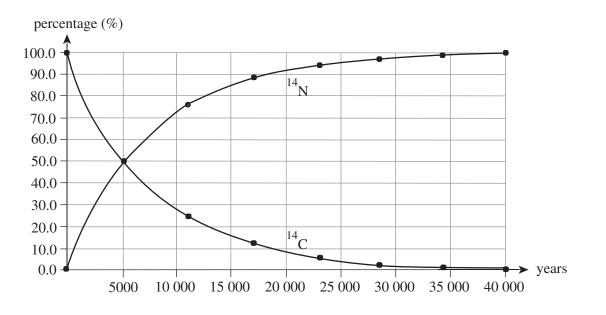
Question 6 (2 marks)

$$^{210}_{83}\text{Bi}^* \rightarrow ^{210}_{83}\text{Bi} + ^{0}_{0}\gamma$$

2 marks 1 mark for $\frac{210}{83}Bi$. 1 mark for ${}^0_0 \gamma$.

Question 7 (11 marks)

a.
$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta$$
 + antineutrino


3 marks 1 mark for the correct elements. 1 mark for the correct mass numbers. 1 mark for the correct atomic numbers.

Years from present	0	5700	11 400	17 100	22 800	28 500	34 200	39 900
% ¹⁴ C	100.0	50.0	25.0	12.5	6.3	3.1	1.6	0.8
$\%^{14}$ N	0.0	50.0	75.0	87.5	93.8	96.9	98.4	99.2

3 marks

1 mark for the correct years. 1 mark for correct percentages for ¹⁴C. 1 mark for correct percentages for ¹⁴N.

4 marks 1 mark for correct ¹⁴C plotting. 1 mark for ¹⁴C line of best fit. 1 mark for correct ¹⁴N plotting. 1 mark for ¹⁴N line of best fit.

d. $\frac{1}{2^{10}} = 9.8 \times 10^{-4}$

 $\therefore n = 10$

The carbon-14 in an organic material will become difficult to detect after approximately 10 half-lives (9.8×10^{-4}) .

Question 8 (7 marks)

a. weight of three protons:

 $3 \times 1.6726 \times 10^{-27} = 5.0178 \times 10^{-27}$ kg weight of four neutrons:

$$4 \times 1.6749 \times 10^{-27} = 6.996 \times 10^{-27} \text{ kg}$$

The total weight of 3 protons and neutrons is 1.1717×10^{-26} kg. difference from the lithium-7 nucleus:

$$1.1717 \times 10^{-26} - 1.1650 \times 10^{-26} = 6.7400 \times 10^{-29} \text{ kg}$$

3 marks

1 mark

mark for weights of protons and weights of neutrons.
 1 mark for total weight of protons and neutrons.
 1 mark for difference in weight from the lithium-7 nucleus.

b. The difference of mass is converted to energy released by the seven nucleons. 1 mark **c.** $E = mc^2$ $= 6.7400 \times 10^{-29} \times (3 \times 10^8)^2$

$$= 6.0660 \times 10^{-12} \text{ J}$$

$$= \frac{6.0660 \times 10^{-12}}{1.6 \times 10^{-13}}$$
1 mark

Question 9 (6 marks)

a. $R_{\rm T} = 100 + 200 + 300$ $= 600 \ \Omega$ 1 mark $V_{\rm T} = I_{\rm T} \times R_{\rm T}$ $6.0 = I_{\rm T} \times 600$ $I_{\rm T} = 0.010 \ {\rm A}$ $= 10 \ {\rm mA}$ 1 mark $V_{\rm drop/voltmeter} = 0.010 \times 300$ $= 3.0 \ {\rm V}$ 1 mark

b.
$$\frac{1}{R_{T}} = \frac{1}{200} + \frac{1}{300}$$

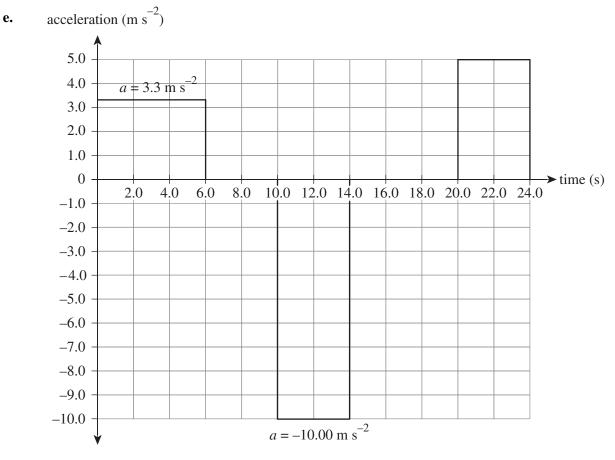
 $R_{T} = 120 \ \Omega$ 1 mark
 $V_{T} = I_{T} \times R_{T}$
 $6.0 = I_{T} \times 120$
 $I_{T} = 0.050 \ A$
 $I_{T} = 50 \ mA$ 1 mark
 $V_{voltmeter} = 6.0 \ V (same as the supply)$ 1 mark

Question 10 (8 marks)

a.	component X		
		ponent X is ohmic because its resistance is constant for all current–voltage pairs, own by the straight line through the origin.	
			1 mark
b.	i.	30 mA	1 mark
	ii.	80 mA	1 mark
	iii.	resistance of component X:	
		$R = \frac{8.0}{0.08}$	
		$= 1000 \ \Omega$	1 mark
		resistance of component Y:	
		$R = \frac{8.0}{0.03}$	
		$= 2667 \ \Omega$	1 mark
		effective resistance:	
		$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2}$	
		$\frac{1}{R_{\rm T}} = \frac{1}{1000} + \frac{1}{2667}$	1 mark
		$R_{\rm T} = 727 \ \Omega$	1 mark
Que	stion 1	1 (3 marks)	
a.	A pe	rson could get an electric shock.	1 mark
b.		active wire comes into contact with the metal case, the outer casing could me live.	1 mark
		e is a 240 V AC potential difference between the person's hand and the ground, a current may flow.	1 mark
Que	stion 1	2 (15 marks)	
a.	10.0	$m s^{-1}$	1 mark
	The	direction is East.	1 mark
b.	$a = \frac{2}{3}$	$\frac{40.0}{4.0}$	1 mark
	=	10.0 m s^{-2}	1 mark
	The	direction is West.	1 mark

c. distance =
$$\frac{1}{2} \times 6.0 \times 20.0 + 4.0 \times 20.0 + \frac{1}{2} \times 2.0 \times 20.0 + 1$$
 mark

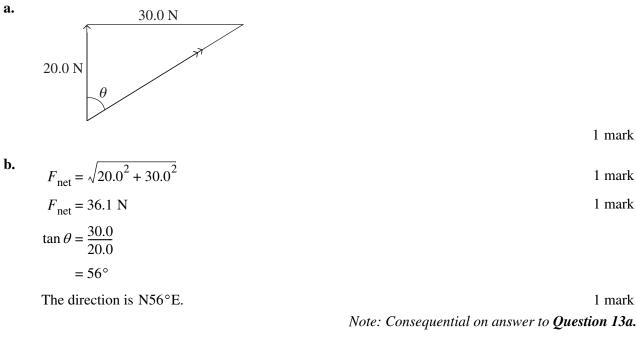
$$\frac{1}{2} \times 2.0 \times 20.0 + 6.0 \times 20.0 + \frac{1}{2} \times 4.0 \times 20$$
 1 mark


= 340 m

1 mark 1 mark

NA

d. displacement =
$$\left(\frac{1}{2} \times 6.0 \times 20.0 + 4.0 \times 20.0 + \frac{1}{2} \times 2.0 + 20.0\right) - \left(\frac{1}{2} \times 2.0 \times 20.0 + 6.0 \times 20.0 + \frac{1}{2} \times 4.0 \times 20.0\right)$$
 1 mark


1 mark

4 marks

1 mark for correct scale. 1 mark for correct shape. 1 mark for acceleration = 3.3 m s^{-2} East. 1 mark for acceleration = 10.0 m s^{-2} West.

Question 13 (4 marks)

Question 14 (6 marks)

a.	$F_{\rm net} = ma$	
	300 = 60a	1 mark
	$a = 5 \text{ m s}^{-2}$	1 mark

b.
$$F_{\text{net}} = ma$$

$$F_{A \text{ on } B} = 40 \times 5$$

$$= 200 \text{ N}$$
1 mark

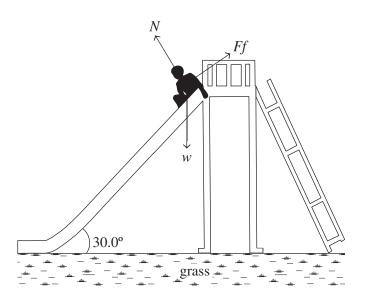
 $F_{\text{B on A}} = 200 \text{ N}$ c. 1 mark The direction is to the left. 1 mark

Note: Consequential on answer to Question 14b.

Note: Consequential on answer to Question 14a.

Question 15 (5 marks)

 $F_N = ma$ a. $T - 4.0 \times 9.8 = 4.0a$ $5.0 \times 9.8 - T = 5.0a$ $5.0 \times 9.8 - (4a + 4.0 \times 9.8) = 5.0a$ 9.8 = 9.0a1 mark $a = 1.1 \text{ m s}^{-2}$ 1 mark 1 mark


The direction is up.

$$T - 4.0 \times 9.8 = 4.0 \times 1.1$$
 1 mark
 $T = 43.6$ N 1 mark

Note: Consequential on answer to Question 15a.

a.

b.

3 marks

1 mark for showing force due to weight (w).

1 mark for showing force due to normal reaction (N).

1 mark for showing frictional forces (Ff).

b.	$F_{\text{normal force}} = 80 \times 9.8 \cos 30$	1 mark
	= 679.0 N	1 mark
c.	$F_{\rm net} = 80 \times 9.8 \sin 30 - 100$	1 mark
	= 292.0 N	1 mark
d.	$F_{\rm net} = ma$	
	292.0 = 80a	1 mark
	$a = 3.7 \text{ m s}^{-2}$	1 mark
		Note: Consequential on answer to Question 16b.

Question 17 (4 marks)

a.
$$k = \text{gradient} = \frac{5.0 \times 10^3}{0.1}$$
 1 mark

$$= 5.0 \times 10^{4} \text{ N m}^{-1}$$

$$= 50\ 000 \text{ N m}^{-1}$$
1 mark

b. elastic potential energy =
$$\frac{1}{2} \times 2.5 \times 10^3 \times 0.05$$
 1 mark
= 62.5 J 1 mark

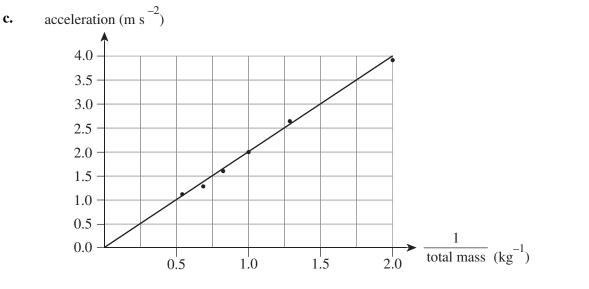
Question 18 (12 marks)

Total 1	nass (kg)	Acceleration (m s ⁻²)	$\frac{1}{\text{total mass}} \ (\text{kg}^{-1})$
0.	500	3.9	2.0
0.	750	2.7	1.3
1.	000	2.0	1.0
1.	250	1.6	0.8
1.	500	1.3	0.7
1.	750	1.1	0.6

2 marks

1 mark for correct entry of (kg^{-1}) . 1 mark for correct entry of 1.3.

_


b.

a.

Classification	Variable
controlled	total mass of system (trolley + masses)
dependent	acceleration
independent	force applied/falling mass

3 marks

Award 1 mark for each correct entry.

3 marks

1 mark

1 mark

1 mark for data points. 1 mark for line of best fit. 1 mark for horizontal axis unit kg^{-1}.

d. gradient =
$$\frac{\text{rise}}{\text{run}} = \frac{4.0}{2.0}$$

= 2.0

e.

gradient =
$$\frac{a}{\left(\frac{1}{m}\right)}$$
 = ma
 F_{applied} = gradient 1 mark
= 2.0 N 1 mark