

Trial Examination 2021

VCE Physics Unit 1

Written Examination

Suggested Solutions

SECTION A – MULTIPLE-CHOICE QUESTIONS

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	C	D
5	Α	В	C	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Question 1 C

C is correct. Heat naturally flows in one direction only: from hot toward cold. A, B and D are incorrect. These diagrams do not show the heat flowing in the correct direction.

Question 2 D

U = Q - W35 = Q - 15Q = 50J

Question 3 A

 $Q = mc\Delta T$ $1.0 \times 4200 \times (T_f - 15) = -(0.9 \times 880 \times (T_f - 90))$ $4992T_f = 127\ 800$ $T_f = 26.9$

The final temperature of the mixture is closest to 27.0°C.

Question 4 C

Circuit X:

$$P_{T} = \frac{V_{T}^{2}}{R_{T}}$$
$$= \frac{1.0^{2}}{0.5}$$
$$= 2.0 \text{ W}$$

Circuit Y:

$$P_{T} = \frac{V_{T}^{2}}{R_{T}}$$
$$= \frac{1.0^{2}}{2.0}$$
$$= 0.5 \text{ W}$$

Circuit Z:

$$P_{T} = \frac{V_{T}^{2}}{R_{T}}$$
$$= \frac{1.0^{2}}{1.5}$$
$$= 0.7 \text{ W}$$

In order from lowest total power output to highest total power output, the circuits are Y, Z, X.

Question 5 C energy (kWh) = $4.8 \times 2.0 \times 14$ = 134.4 kWh $25.5 \times 134.4 = 3427.2$ The total cost of the energy consumed is \$34.27. Question 6 D LHS = RHS X:

 $233 \rightarrow 229 + 4$ $92 \rightarrow 90 + 2$ Hence, $X = \frac{4}{2}\alpha$. Y: $202 \rightarrow 202 + 0$ $81 \rightarrow 81 + 0$ Hence, $Y = \frac{0}{0}\gamma$. Z: $82 \rightarrow 82 + 0$ $35 \rightarrow 36 + (-1)$ Hence, $Z = \frac{0}{-1}\beta$.

Question 7 D

Slow cooker: P = VI $200 = 240 \times I$ I = 0.83 A $P = \frac{V^2}{R}$ $200 = \frac{240^2}{R}$ $R = 288 \Omega$ Kettle: P = VI $1000 = 240 \times I$ I = 4.17 A $P = \frac{V^2}{R}$ $1000 = \frac{240^2}{R}$ $R = 568 \Omega$

Question 8 B

$$\left(+\frac{2}{3}-\frac{1}{3}-\frac{1}{3}\right) = \left(+\frac{2}{3}+\frac{2}{3}-\frac{1}{3}\right) + X$$
$$X = -1$$

Therefore, the other particle produced in this transformation is an electron.

Question 9 B

$$V_{\text{out}} = \frac{R_1}{\left(R_1 + R_2\right)} \times V_{\text{in}}$$
$$8 = \frac{800}{800 + R_2} \times 12$$
$$R_2 = 400 \ \Omega$$

Question 10 C

C is correct. The conversion of an element into another element by bombarding it with a fundamental particle such as a neutron is known as artificial transmutation. **A**, **B** and **D** are incorrect. These terms do not represent the equation shown.

SECTION B

Question 1 (5 marks)

a.	$Q = mc\Delta T$	
	$2000 = m \times 385 \times 100$	1 mark
	m = 0.05195	1 mark
	$=5.19 \times 10^{-2}$ kg (to 3 significant figures)	1 mark
b.	The process is endothermic.	1 mark
	It is endothermic because the piece of copper absorbs heat from the environment.	1 mark
Que	stion 2 (8 marks)	
a.	20°C	1 mark
	20 + 273 = 293 K	1 mark
b.	At 80°C, the sample is changing state from a gas into a liquid, or from a liquid into a gas.	1 mark 1 mark
c.	$Q = mL_{\rm e}$	
	$L_v = \frac{6.0 \times 10^3 - 2.0 \times 10^3}{0.05}$	1 mark
	$= 8.0 \times 10^4 \text{ J kg}^{-1}$	1 mark
d.	$Q = mc\Delta T$	
	$10.0 \times 10^3 - 6.0 \times 10^3 = 0.05 \times c \times (80.0 - 20.0)$	1 mark
	$c = 1.3 \times 10^3 \text{ J kg}^{-1} \text{ °C}$	1 mark
Que	stion 3 (4 marks)	
	$\lambda_{\rm max} = \frac{0.0028 \text{ m K}}{T}$	1 mark
635	$\times 10^{-9} = \frac{0.0028 \text{ m K}}{T}$	
	$T = \frac{0.0028}{635 \times 10^{-9}}$	1 mark
	= 4409 K	1 mark
	=4409-273	
	$= 4140^{\circ}C$	1 mark
Que	stion 4 (2 marks)	
a.	increases	1 mark
b.	shorter wavelengths	1 mark

Question 5 (3 marks)

- **a.** For example, any two of:
 - melting ice caps and rising sea-levels
 - more severe weather events (such as more intense cyclones)
 - increased stress and death rates in animals

2 marks

Note: A range of responses are acceptable.

- **b.** *For example, any one of:*
 - reduce the levels of gases that absorb heat and hence re-radiate heat
 - reduce use of fossil fuels
 - increase the amount of materials recycled

			l mark
		Note: A range of respons	es are acceptable.
Que	estion	6 (2 marks)	
This	s is an	example of conduction.	1 mark
The elec Hot	electr trons t ter, mo	rons in the metal spoon leave their atoms and move about in the metal as free transferring kinetic energy from the head of the spoon to the cooler handle. ore rapidly vibrating atoms collide with cooler, less rapidly vibrating atoms	
and	transf	er kinetic energy.	1 mark
Que	estion	7 (4 marks)	
a.	i.	equal to	1 mark
	ii.	less than	1 mark
b.	Ten are ene	nperature is average kinetic energy. As both the cup and swimming pool at the same temperature, the water molecules have the same average kinetic rgy. Temperature is proportional to the average kinetic energy.	1 mark
	Inte a su	ernal energy is the sum of total kinetic energy and potential energy within ubstance. Hence, the swimming pool of water has more internal energy than	
	the	cup of water.	1 mark

Question 8 (6 marks)

$$R_{T} = 10.0 + 10.0 + 20.0$$

= 40.0 \Omega
$$V_{T} = I_{T} \times R_{T}$$

24.0 = $I_{T} \times 40.0$
$$I_{T} = 0.6 \text{ A}$$

$$I_{T} = I_{1} = I_{2} = I_{3} = 0.6 \text{ A}$$

$$V_{1} = 0.6 \times 10.0$$

= 6.0 \V
$$V_{1} = V_{2} = 6.0 \text{ V}$$

 $V_{3} = 0.6 \times 20.0$ = 12.0 V $P_{1} = 12.0 \times 0.6$ = 3.6 W $P_{1} = P_{2} = 3.6 W$ $P_{3} = 0.6 \times 12$ = 7.2 W $P_{T} = 3.6 + 3.6 + 7.2$ = 14.4 W

	R ₁	R ₂	R ₃	Total
$V(\mathbf{V})$	6.0	6.0	12.0	24.0
<i>I</i> (A)	0.6	0.6	0.6	0.6
$R(\Omega)$	10.0	10.0	20.0	40.0
$P(\mathbf{W})$	3.6	3.6	7.2	14.4

6 marks

Note: Award 6 marks for all 12 correct values. Award 5 marks for 9–11 correct values. Award 4 marks for 7–8 correct values. Award 3 marks for 5–6 correct values. Award 2 marks for 3–4 correct values. Award 1 mark for 2 correct values.

Question 9 (6 marks)

$$\frac{1}{R_T} = \frac{1}{(10.0 + 10.0)} + \frac{1}{20.0}$$
$$R_T = \frac{20.0}{2}$$
$$= 10.0 \ \Omega$$
$$V_T = I_T \times R_T$$
$$24.0 = I_T \times 10.0$$
$$I_T = 2.4 \ A$$

Each branch has total resistance of 20.0 Ω , so each branch has 1.2 A.

$$I_1 = I_2 = I_3 = 1.2 \text{ A}$$

There is a voltage drop of 24.0 V across each branch, and this voltage is equally shared across both resistors in the first branch.

$$V_{1} = V_{2} = 12.0 \text{ V}$$

$$V_{3} = 24.0 \text{ V}$$

$$P_{1} = P_{2} = 12.0 \times 1.2 = 14.4 \text{ W}$$

$$P_{3} = 24.0 \times 1.2$$

$$= 28.8 \text{ W}$$

$$P_{T} = 14.4 + 14.4 + 28.8$$

$$= 57.6 \text{ W}$$

	R ₁	R ₂	R ₃	Total
$V(\mathbf{V})$	12.0	12.0	24.0	24.0
<i>I</i> (A)	1.2	1.2	1.2	2.4
$R(\Omega)$	10.0	10.0	20.0	10.0
<i>P</i> (W)	14.4	14.4	28.8	57.6

6 marks

Note: Award 6 marks for all 12 correct values. Award 5 marks for 9–11 correct values. Award 4 marks for 7–8 correct values. Award 3 marks for 5–6 correct values. Award 2 marks for 3–4 correct values. Award 1 mark for 2 correct values.

Question 10 (7 marks)

$V_{\text{resistor}} = V_{\text{supply}} - V_{\text{diode}}$ $= 6.0 - 0.7$ $= 5.3 \text{ V}$	1 morte
= 6.0 - 0.7 = 5.3 V	1 mark
= 5.3 V	1 mortz
	1 IIIdI K
$V = I \times R$	
$5.3 = I \times 100$	1 mark
I = 0.053 A	1 mark
= 53 mA	1 mark
.0 V	1 mark
as there is no current in the circuit, there are 0 V across the resistor. Hence, the new otential difference across the diode is 6.0 V.	1 mark
on 11 (5 marks)	
Oouble insulation means there are two layers of protection to prevent electric shock.	1 mark
'he first layer of insulation insulates electrical cable from the internal component f the appliance.	1 mark
he second layer of insulation involves insulating any internal metal parts that could ecome live from the external casing.	1 mark
Nouble insulation prevents any possibility of the external casing of the appliance ecoming live.	1 mark
e e	
	$V = I \times R$ $3 = I \times 100$ I = 0.053 A = 53 mA 0 V is there is no current in the circuit, there are 0 V across the resistor. Hence, the new obtential difference across the diode is 6.0 V. n 11 (5 marks) rouble insulation means there are two layers of protection to prevent electric shock. the first layer of insulation insulates electrical cable from the internal component f the appliance. the second layer of insulation involves insulating any internal metal parts that could ecome live from the external casing.

- . .

a. ${}^{238}_{92}\text{U} \rightarrow {}^{234}_{90}\text{Th} + {}^{4}_{2}\text{He}$

2 marks 1 mark for correct reactants and products. 1 mark for nucleons correctly balanced.

b.	$mass_{defect} = (238.0508 \text{ u} - (234.0426 \text{ u} + 4.0026 \text{ u})) \times 1.6605 \times 10^{-27}$	1 mark
	$=9.2988 \times 10^{-30}$ kg	1 mark
	$E = mc^2$	
	$=9.2988\times10^{-30}\times(3.0\times10^8)^2$	1 mark
	$= 8.3689 \times 10^{-13} $ J	1 mark
	$= 5.2306 \times 10^{6} \text{ eV}$	1 mark
Que	stion 13 (5 marks)	
a.	Any one of:	
	• mass	
	• spin	
	• lifetime	
		1 mark
b.	The main difference between a matter particle and its corresponding antimatter particle is the electric charge.	1 mark
	The electric charge of a matter particle and its corresponding antimatter particle is the same in magnitude, but opposite in sign.	1 mark
c.	When a matter particle and its corresponding antimatter particle collide,	
	a photon is produced.	1 mark
	The photon is equivalent to the energy of the two particles, calculated by Einstein's mass–energy equation, $E = mc^2$.	1 mark

Question 14 (4 marks)

a.	${}^{214}_{82}\text{Pb} \rightarrow {}^{214}_{83}\text{Bi} + {}^{0}_{-1}\beta$	2 marks
		1 mark for correct reactants and products. 1 mark for nucleons correctly balanced.
b.	${}^{210}_{84}\text{Po} \rightarrow {}^{206}_{82}\text{Pb} + {}^{4}_{2}\alpha$	2 mortes

2 marks 1 mark for correct reactants and products. 1 mark for nucleons correctly balanced.

Question 15 (3 marks)

a.	Light from moving galaxies will appear to have different wavelengths and, hence, spectrum, depending on the relative motion of the source and the observer.	1 mark
	Observers looking at an approaching galaxy, such as Andromeda, see light that is shifted to a shorter wavelength (a blueshift).	1 mark
b.	Blueshift provides evidence that a source of light is moving closer towards the observer.	1 mark

Question 16 (9 marks)

a.	8 days	1 mark
b.	n = 4	1 mark
	$\frac{100}{2^4} = 6.25\%$	
	= 6.3%	1 mark
c.	As radioactive isotopes with relatively short half-lives decay quickly, they allow	
	for a quick diagnosis	1 mark
	and decrease the time in which harmful effects could occur.	1 mark
d.	Mass: Beta-minus radiation is lighter.	1 mark
	Charge: Beta-minus radiation has a negative charge, not a positive charge.	1 mark
	Penetrating ability: Beta-minus radiation is more penetrating.	1 mark
	Ionising ability: Beta-minus radiation is less ionising.	1 mark