Neap

Trial Examination 2021

VCE Physics Unit 1

Written Examination

Question and Answer Booklet

Reading time: 15 minutes Writing time: 1 hour 30 minutes

Student's Name: _____

~

Teacher's Name:

Structure of booklet				
Section	Number of questions	Number of questions to be answered	Number of marks	
A	10	10	10	
В	16	16	80	
			Total 90	

. . . .

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, pre-written notes (one folded A3 sheet or two A4 sheets bound together by tape) and one scientific calculator.

Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

Question and answer booklet of 19 pages

Formula sheet

Answer sheet for multiple-choice questions

Instructions

Write your **name** and your **teacher's name** in the space provided above on this page, and on the answer sheet for multiple-choice questions.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

At the end of the examination

Place the answer sheet for multiple-choice questions inside the front cover of this booklet.

You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION A - MULTIPLE-CHOICE QUESTIONS

Instructions for Section A
Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct or that best answers the question.
A correct answer scores 1; an incorrect answer scores 0.
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this booklet are not drawn to scale.
Take the value of g to be 9.8 m s ^{-2} .

Question 1

Which one of the following diagrams correctly represents the flow of heat?

Question 2

A balloon reaches an internal energy of 35 J and expands using 15 J.

What is the heat transfer to the system?

- **A.** -50 J
- **B.** –20 J
- **C.** 20 J
- **D.** 50 J

Question 3

In an experiment, 900 g of aluminium is heated to 90.0°C. It is then dropped into 1.00 L of water with a temperature of 15.0°C.

Data

C _{aluminium}	$880 \text{ J kg}^{-1} ^{\circ}\text{C}^{-1}$
C _{water}	$4200 \text{ J kg}^{-1} \text{ °C}^{-1}$
density of water	1 g mL^{-1}

The final temperature of the water and aluminium is closest to

A. 27.0°C

- **B.** 31.0°C
- **C.** 38.0°C
- **D.** 39.0°C

Question 4

In the circuits shown below, each battery is 1.0 V and each resistor is 1.0 Ω .

Which one of the following correctly orders the total power output of the circuits from lowest to highest?

- **A.** X, Y, Z
- **B.** Z, X, Y
- **C.** Y, Z, X
- **D.** Y, X, Z

Question 5

A household uses 4800 W of electric power during the 2-hour period from 6:00 pm to 8:00 pm. The amount of power used is the same every night. The cost of energy is 25.5 cents per kWh.

What is the total cost of energy consumed between 6:00 pm to 8:00 pm over a 2-week period?

- **A.** \$2.45
- **B.** \$13.44
- **C.** \$34.27
- **D.** \$134.40

Question 6

Consider the following decay equations.

$^{233}_{92}U \rightarrow$	$^{229}_{90}$ Th + X
$^{202}_{81}$ Tl \rightarrow	$^{202}_{81}$ Tl + Y
$^{82}_{35}\mathrm{Br} \rightarrow$	$^{82}_{36}$ Kr + Z

X, Y and Z respectively are

- A. alpha, beta, gamma.
- **B.** beta, gamma, alpha.
- C. gamma, alpha, beta.
- **D.** alpha, gamma, beta.

Question 7

A 200 W slow cooker and a 500 W kettle are both plugged into a 240 V DC power supply.

When the appliances are compared, the

- **A.** $I_{\text{slow cooker}} > I_{\text{kettle}}$ and the $R_{\text{slow cooker}} > R_{\text{kettle}}$.
- **B.** $I_{\text{slow cooker}} < I_{\text{kettle}}$ and the $R_{\text{slow cooker}} > R_{\text{kettle}}$.
- **C.** $I_{\text{slow cooker}} > I_{\text{kettle}}$ and the $R_{\text{slow cooker}} < R_{\text{kettle}}$.
- **D.** $I_{\text{slow cooker}} < I_{\text{kettle}}$ and the $R_{\text{slow cooker}} < R_{\text{kettle}}$.

Question 8

Two types of quarks and their respective charges are shown below.

Quark	Charge	Symbol
up	$+\frac{2}{3}$	и
down	$-\frac{1}{3}$	d

A quark with the composition up, down, down (*udd*) transforms into a particle with the quark composition up, up, down (*uud*).

The other particle produced in this transformation is

- **A.** a positron.
- **B.** an electron.
- **C.** a proton.
- **D.** a neutron.

Question 9

A refrigerator is required to maintain a temperature below 10°C. The cooling unit of the refrigerator is controlled by a thermistor using the circuit shown below. To turn the cooling unit on, a voltage of 8.0 V is required across the thermistor.

The resistance versus temperature characteristic curve of a thermistor is shown below.

What is the value of the variable resistor shown above when the voltage across the thermistor is 8.0 V?

- **A.** 100 Ω
- **B.** 400 Ω
- **C.** 600 Ω
- **D.** 800 Ω

Question 10

The stable isotope boron-10 is bombarded with neutrons and transforms into lithium-7 by emitting an alpha particle, as shown below.

$${}^{10}_{5}\text{B} + {}^{1}_{0}n \rightarrow {}^{7}_{3}\text{Li} + {}^{4}_{2}\text{He}$$

This is an example of

A. fission.

- **B.** fusion.
- **C.** artificial transmutation.
- **D.** natural transmutation.

SECTION B

Instructions for Section B

Answer **all** questions in the spaces provided.

Where an answer box is provided, write your final answer in the box.

If an answer box has a unit printed in it, give your answer in that unit.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Take the value of g to be 9.8 m s⁻².

Question 1 (5 marks)

A piece of copper of unknown mass absorbs 2000 J of energy and undergoes a temperature change from 375 K to 475 K.

$$C_{\text{copper}} = 385 \text{ J kg}^{-1} \circ \text{C}^{-1}$$

a. What is the mass of the piece of copper, correct to three significant figures? Show your working.

kg

3 marks

2 marks

b. Is this process endothermic or exothermic? Give your reasoning.

Question 2 (8 marks)

temperature (°C) 100.0 80.0 60.0 40.0 20.0 2.0 4.0 6.0 4.0 6.0 4.0 2.0 4.0 6.0 4.0 6.0 4.0 6.0 4.0 6.0 4.0 6.06.0

a. What is the freezing point for the sample, in Kelvin? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks Image: state of the sample when it reaches 80°C? 2 marks </

d. Calculate the specific heat capacity of the sample while it is a liquid. 2 marks

 $J \ kg^{-1} \ ^{\circ}C$ Question 3 (4 marks) The Sun is a yellow star with a peak intensity at about 635 nm. What is the temperature of the surface of the Sun? °C

Ques Circle	tion 4 (2 marks) e the correct response to e	complete the se	entences.			
a.	As an object gets hotter, the intensity at all wavelengths			1 mark		
		increases	decreases	stays the s	ame	
b.	As an object gets hotter	, the peak inten	sity moves to			1 mark
		shorter wavel	engths lo	nger waveler	ngths	
Ques	tion 5 (3 marks)					
a.	Identify two possible in	pacts of the en	hanced green	house effect.		2 marks
b.	Identify a strategy for re	educing the neg	ative impact of	of the enhand	ced greenhouse effect	t. 1 mark

Question 6 (2 marks)

When a metal spoon with a temperature of 250° C is placed into a beaker of water with a temperature of 950° C, the spoon will heat up.

What type of heat transfer is this? Explain your reasoning.

Question 7 (4 marks)

A cup of water and a swimming pool of water are both at the same temperature.

i.	Is the average kinetic energy of the cup of water greater than, equal to or less than the average kinetic energy of the swimming pool of water?	1 mark
ii.	Is the internal energy of the cup of water greater than, equal to or less than the internal energy of the swimming pool of water?	1 mark
Exp	lain your reasoning for the answers given in part a.	2 marks
	і. іі. Ехр	 is the average kinetic energy of the cup of water greater than, equal to or less than the average kinetic energy of the swimming pool of water? ii. Is the internal energy of the cup of water greater than, equal to or less than the internal energy of the swimming pool of water? Explain your reasoning for the answers given in part a.

Question 8 (6 marks)

Consider the circuit shown in Figure 2.

Complete the table of values below for this circuit.

	R ₁	R ₂	R ₃	Total
$V\left(\mathbf{V} ight)$				24.0
<i>I</i> (A)				
$R(\Omega)$	10.0	10.0	20.0	
<i>P</i> (W)				

Question 9 (6 marks)

Consider the circuit shown in Figure 3.

Complete the table of values below for this circuit.

	R ₁	R ₂	R ₃	Total
$V\left(\mathbf{V} ight)$				24.0
<i>I</i> (A)				
$R\left(\Omega ight)$	10.0	10.0	20.0	
P (W)				

Question 10 (7 marks)

The current versus voltage graph for a diode is shown in Figure 4.

The diode is placed in the circuit shown in Figure 5.

d. The diode is reversed, as shown in Figure 6.

Figure 6

What is the new potential difference across the diode? Explain your reasoning. 2 marks

Question 11 (5 marks)

Some appliances are double insulated and do not need an earth pin.

What does it mean when an appliance is double insulated? In your answer, identify	
the role of each layer of insulation.	3 mark
Explain why an earth pin is not needed for double insulated appliances.	2 marks

Question 12 (7 marks)

Uranium-238 decays into thorium-234 and an alpha particle, as shown in Figure 7.

Consider the following data.

Data

$^{238}_{92}$ U = 238.0508 u
$^{234}_{90}$ Th = 234.0426 u
$^{4}_{2}\alpha = 4.0026$ u
$u = 1.6605 \times 10^{-27} \text{ kg}$

Write down the full decay equation for uranium-238. a.

2 marks

5 marks

- b. Calculate the energy released by the decay equation in part a.

eV

Question 13 (5 marks)

For every matter particle, there is an antimatter particle.

a.	Name one characteristic that is the same for both a matter particle and its corresponding antimatter particle.	1 mark
).	Explain the main difference between a matter particle and its corresponding antimatter particle.	2 marks
•	Describe what happens when a matter particle and its corresponding antimatter particle collide.	2 marks

Question 14 (4 marks)

Figure 8 shows the end of the decay series for uranium-238.

Question 16 (9 marks)

Figure 9 shows the decay curve for iodine-131, which is a radioactive iodine salt that alters the mechanism of iodine absorption in the thyroid gland. Radioactive isotopes with relatively short half-lives, such as iodine-131, are often used for medical diagnosis and treatment. It is particularly useful for the destruction of overactive cells in the thyroid gland.

- **a.** Using Figure 9, estimate the half-life of iodine-131.
 - days

c. Explain why radioactive isotopes with relatively short half-lives are desirable for medical diagnostic and treatment purposes.

%

2 marks

1 mark

d. Iodine-131 is a beta-minus emitter.

How does beta-minus radiation compare with alpha radiation in terms of mass, charge, penetrating ability and ionising ability? 4 marks

Mass
Charge
Penetrating ability
Ionising ability

END OF QUESTION AND ANSWER BOOKLET

Neap

Trial Examination 2021

VCE Physics Unit 1

Written Examination

Formula Sheet

Instructions

This formula sheet is provided for your reference. A question and answer booklet is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

PHYSICS FORMULAS

specific heat	$Q = mc\Delta t$
latent heat	Q = mL
Wien's law	$\lambda_{\rm max}T = 2.9 \times 10^{-3} \ {\rm mK}$
Stefan–Boltzmann law	$P = \sigma T^4$ where Stefan–Boltzmann constant $\sigma = 5.67 \times 10^{-8}$ W m ⁻² K ⁴
first law of thermodynamics	$\Delta U = Q - W$
mass-energy equation	$E = mc^2$
power	$P = \frac{E}{t}$ or $P = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ or $P = Fv$
electrical charge	Q = It
electrical work	W = QV
voltage	V = IR
power	P = VI
resistors in series	$R_{\rm T} = R_1 + R_2 \dots$
resistors in parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} \dots$
efficiency	efficiency (%) = $\frac{\text{useful energy output}}{\text{energy input}} \times 100$

Data

speed of light in a vacuum	$c = 3.0 \times 10^8 \text{ m s}^{-1}$
1 eV	$1.6 \times 10^{-19} \mathrm{J}$
charge on the electron	$e = 1.6 \times 10^{-19} \mathrm{C}$

Prefixes/Units

$p = pico = 10^{-12}$	$n = nano = 10^{-9}$	$\mu = \text{micro} = 10^{-6}$	$m = milli = 10^{-3}$
$k = kilo = 10^3$	$M = mega = 10^6$	$G = giga = 10^9$	$t = tonne = 10^3 kg$

$\underset{\text{helium}}{\overset{2}{He}}$	${\overset{10}{Ne}}_{{}^{20.2}}$	18 Ar 39.9 argon	36 Kr 83.8 krypton	54 Xe 131.3 xenon	86 Rn (222) radon	$\underset{(294)}{\overset{118}{0}g}$		
	9 19.0 fluorine	$\overset{17}{\text{Cl}}_{35.5}^{35.5}$	35 Br 79.9 bromine	53 I 126.9 iodine	$\mathop{\mathbf{At}}_{(210)}^{85}$	$\mathop{TS}_{(294)}^{117}$	$rac{71}{175.0}$ lutetium	$\underset{(262)}{103}$
	8 16.0 oxygen	16 32.1 sulfur	34 Se $_{79.0}$	\mathbf{Te}_{y}^{52}	$\overset{84}{P0}$	116 Lv (292) Ilivermoriu	70 Yb 173.1 ytterbium	N_{0}^{102}
	N nitroger	15 P ^{30.1}	33 34.9 74.9 m	S1 Sb ^{121.8} ^{antimon}	83 Bi ^{209.0}	115 Mc (289) moscoviu	${\bf F}_{\rm min}^{69}$	I01 Md (258) nendelevium
	د ت د arbon	14 Silicon	$1 - \frac{32}{72.6}$	50 Su 118.7	Pb 10,2072 Iead	114 114 (289) m fleroviu	68 ET 167.3 erbium	$\mathop{Fm}_{\mathrm{fermium}}^{100}$
	B 10.8 boron	$\mathbf{AI}_{27.0}^{13}$	1 Ga 69.7 galliur	1 1 1 49 1 1 1 1 1 1 1 1 1 1	81 19 19 19 19 19 19 19 19 19 19 19 19 19	n 113 Nh Nh ⁽²⁸⁰⁾	$\underset{homium}{\overset{67}{H0}}$	yy ES (252) einsteinium
			30 31 55.4 21 55.4 21	C C 48	1 H	G C 112	$\overset{66}{\text{Dy}}_{\text{dysprosium}}$	$\overset{\mathbf{y8}}{\mathbf{Cf}}_{^{(251)}}$
			e2 02 55.50	47 47 107.5 107.5 107.5	79 197.	111 () (272) (272) (272) (272)	65 158.9 terbium	$\underset{\text{berkelium}}{\textbf{BK}} \textbf{y}_7$
	ment		1000 000 000 000 000 000 000 000 000 00	PC 946	P1 ² ^{195.}	11() (271) (271) (271) (271)	${{64}\atop{157.3}}$	$\mathop{\mathbf{Cm}}_{(247)}^{\mathbf{y}}$
	mbol of ele me of elect			1 1 102. 102.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 10 10 10 10 10	63 EU ^{152.0} europium	$\mathop{Am}\limits_{(243)}^{95}$
	79 Au sy 197.0 add na		n F6	ium rutheni	e 36	h H H	62 Sm ^{150.4} samarium	Pu [244] Plutonium
	umber c mass		r M 1 0 54.5 0 54.5 0 manga	0 TG	75 8 8 186. ten	6 10 10 10 10 10	61 Pm Promethium	$\overset{\textbf{y.5}}{\overset{(237)}}{\overset{(237)}{\overset{(237)}{\overset{(237)}{\overset{(237)}{\overset{(237)}{\overset{(237)}{\overset{(237)}{\overset{(237)}{\overset{(237)}}{\overset{(237)}{\overset{(237}{\overset{(237)}{\overset{(237}{\overset{(237)}{$
	atomic ni tive atomic		⁶ ^{52.(1} ⁶ ⁶ ⁷ ⁶	b N	a 9 183, W 183, W	b S	60 Nd 144.2 neodymium	72 U ^{238.0} ^{238.0}
	rela		⁹ 50. √3	L 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	f 73 .5 180 um tantal	$\begin{array}{c c} \mathbf{f} & 10 \\ \mathbf{f} & \mathbf{D} \\ \mathbf{I} \\$	59 Pr ^{140.9} praseodymiur	91 231.0 protactiniun
			C 0 1 1 22, 1 47. 1 1 1 1 1	9 91. In Zircon	$\frac{71}{178}$	103 10 103 R 10 10 10 10	58 Cerium Cerium	Th 232.0 thorium
[lium Bium	2 Sium Sium	a 1 1 8 5 45 1 1 8 5 3 0	888. 433 66 988. 433 9407	6 57- a lanthau v.3 lanthau	8 89-	$\mathbf{La}_{138.9}$ Lathanum	$\mathbf{A}^{\mathbf{C}}_{(227)}$
e.	m peryli	1 m 24 magne	um calci O \$	an strond	n Darii Darii Darii	m (22 m (22 m radii		

END OF FORMULA SHEET

Trial Examination 2021

VCE Physics Unit 1

Written Examination

Multiple-choice Answer Sheet

Student's Name: _____

Teacher's Name:

Instructions

Use a **pencil** for **all** entries. If you make a mistake, **erase** the incorrect answer – **do not** cross it out. Marks will **not** be deducted for incorrect answers.

No mark will be given if more than one answer is completed for any question.

All answers must be completed like this example: **A B C**

Use pencil only

D

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.