

Trial Examination 2022

VCE Physics Unit 1

Written Examination

Question and Answer Booklet

Reading time: 15 minutes Writing time: 1 hour 30 minutes

Student's Name:		
Teacher's Name:		

Structure of booklet

Section	Number of questions	Number of questions to be answered	Number of marks
А	10	10	10
В	13	13	80
			Total 90

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, pre-written notes (one folded A3 sheet or two A4 sheets bound together by tape) and one scientific calculator.

Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

Question and answer booklet of 22 pages

Formula sheet

Answer sheet for multiple-choice questions

Instructions

Write your name and your teacher's name in the space provided above on this page, and on the answer sheet for multiple-choice questions.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

At the end of the examination

Place the answer sheet for multiple-choice questions inside the front cover of this booklet.

You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION A - MULTIPLE-CHOICE QUESTIONS

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

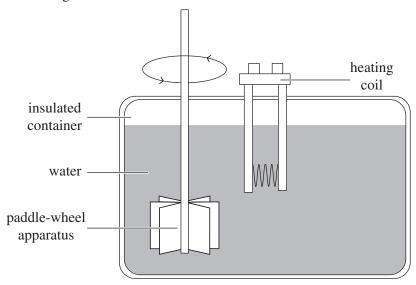
A correct answer scores 1; an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Take the value of g to be 9.8 m s⁻².


Question 1

The term(s) for the transfer of thermal energy through a liquid or gas through flow is

- A. conduction.
- **B.** convection.
- C. radiation.
- **D.** convection and radiation.

Question 2

A student places a heating element and a paddle-wheel apparatus in an insulated container of water, as shown in the diagram below.

The internal energy of this system increased by 1125 J when it absorbed 840 J of heat.

Which one of the following statements is correct?

- **A.** 285 J of work was done on the system.
- **B.** 285 J of work was done by the system.
- **C.** 1965 J of work was done on the system.
- **D.** 1965 J of work was done by the system.

The Sun is a yellow-white star with a peak intensity of about 0.5 μ m. It is known that

$$\sigma_{\text{Wien}} = 2.9 \times 10^{-3} \text{ m K}.$$

Using Wien's Law, what is the temperature of the surface of the Sun?

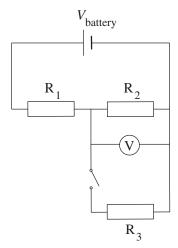
- **A.** $5.8 \times 10^{3} ^{\circ} \text{C}$
- **B.** 5.5×10^{3} °C
- C. $5.8 \times 10^{-3} \, ^{\circ}\text{C}$
- **D.** -2.7×10^{3} °C

Question 4

The charge of one electron is -1.6×10^{-19} coulombs.

The number of electrons needed to make one coulomb of charge is approximately

- **A.** 1.6×10^{-19}
- **B.** 6.3×10^{-19}
- **C.** 1.6×10^{18}
- **D.** 6.3×10^{18}

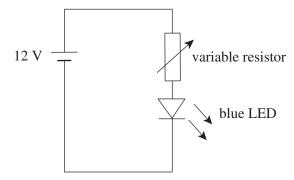

Question 5

A current of 4.0 A flows across a heating element for two minutes and 28.8 kJ of heat energy is produced.

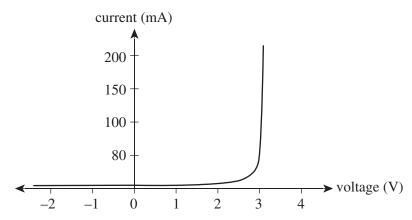
The potential difference across the heating element is closest to

- **A.** 0.060 V
- **B.** 3.6 V
- **C.** 60 V
- **D.** 3600 V

A supply voltage, *V*, is connected to a voltmeter, a switch and three resistors, as shown in the diagram below. The three resistors have the same resistance.



Assume the internal resistance of the battery is negligible.


What are the readings on the voltmeter when the switch is open and when the switch is closed?

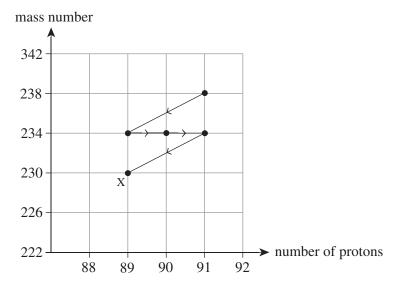
	Voltmeter reading when the switch is open	Voltmeter reading when the switch is closed
A.	0	$\frac{1}{3}$ the voltage of the battery
В.	0	$\frac{1}{2}$ the voltage of the battery
C.	$\frac{1}{2}$ the voltage of the battery	$\frac{1}{3}$ the voltage of the battery
D.	$\frac{1}{2}$ the voltage of the battery	$\frac{1}{2}$ the voltage of the battery

A variable resistor and a forward-biased blue LED are connected in series to a 12 V battery, as shown in the diagram below.

The characteristics of the blue LED are shown in the following graph. The blue LED operates at full brightness with a current of 150 mA.

For the blue LED to operate at full brightness, the resistance of the variable resistor must be

- **A.** $6.0 \times 10^{-2} \Omega$
- **B.** $8.0 \times 10^{-2} \,\Omega$
- $\textbf{C.} \qquad 6.0 \times 10^1 \ \Omega$
- $\mathbf{D.} \qquad 8.0 \times 10^1 \ \Omega$


Question 8

A radioactive source has a half-life of 25 s.

How long will it take for approximately $\frac{7}{8}$ of the source to decay?

- **A.** 22 s
- **B.** 50 s
- **C.** 75 s
- **D.** 200 s

A uranium-238 nucleus undergoes a series of decays to produce nucleus X, as shown in the following series decay graph.

Which one of the following correctly shows the final type of decay and the name of nucleus X?

	Final type of decay	Nucleus X
A.	α	thorium-140
B.	α	thorium-230
C.	β	thorium-140
D.	β	thorium-230

Question 10

The following four events occurred in the earliest moments of the universe over 13.8 billion years ago.

- 1. stable atoms formed
- 2. nuclear fusion began
- 3. elementary particles such as quarks formed
- 4. rapid inflation occurred

Which one of the following correctly orders the events from earliest to latest?

- **A.** 3, 4, 2, 1
- **B.** 4, 3, 2, 1
- **C.** 1, 2, 3, 4
- **D.** 2, 3, 1, 4

END OF SECTION A

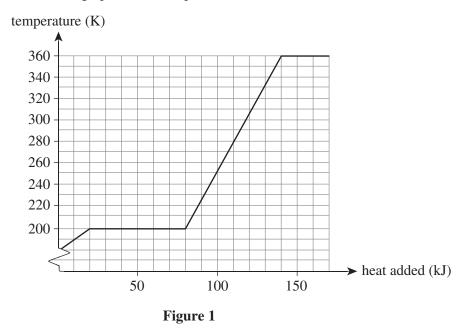
SECTION B

Instructions for Section B

Answer all questions in the spaces provided.

Where an answer box is provided, write your final answer in the box.

If an answer box has a unit printed in it, give your answer in that unit.


In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Take the value of g to be 9.8 m s⁻².

Question 1 (8 marks)

A 250 g sample of an unknown substance was heated. The sample was initially a solid. Figure 1 shows the temperature versus heat added graph for the sample.

a. What is the melting point for the sample in degrees Celsius? Show your working. 2 marks

°C

b. What happened to the substance when it reached 360 K? 2 marks

Calculate the latent heat of fusion for the sample. Show your working.		2 n
	_1	
1	$I k \sigma^{-1}$	
	$J kg^{-1}$	
Calculate the constitution of		
	pacity of the substance when it is a liquid. Show	2 n
Calculate the specific heat cap your working.		2 m
		2 n
		2 n
		2 n
		2 n
		2 m
		2 n
your working.		2 n

Question 2 (6 marks)

A Bunsen burner is used to convert a 500 g sample of liquid ethanol into a gas at 78° C. The ethanol sample is initially at room temperature (25°C). The following data for ethanol is known.

Data

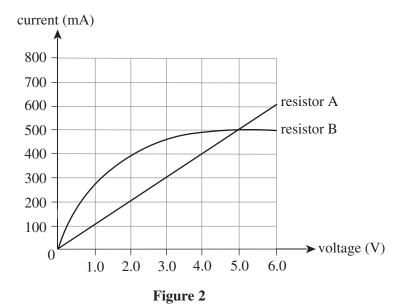
specific heat capacity	$2.5 \times 10^3 \mathrm{J kg}^{-1} \mathrm{K}^{-1}$
latent heat of fusion	$1.1 \times 10^5 \mathrm{J kg}^{-1}$
latent heat of vaporisation	$8.5 \times 10^5 \mathrm{J kg}^{-1}$
melting point	-114°C
boiling point	78°C

Assume that the heat contributed from the surroundings is negligible.

Calculate the minimum amount of heat energy required by the Bunsen burner to change the temperature. Show your working.	2 1
J	
Calculate the minimum amount of heat energy required to change the state of the ethanol liquid. Show your working.	2 1
J	
Calculate the total minimum amount of heat energy required to convert the ethanol liquid at 25°C to ethanol gas at 78°C. Show your working.	2 1

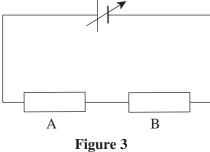
Question 3 (4 marks)

In an experiment, an iron cube of very high purity was heated to 85.0°C. It was then dropped into 200 g of water at 25.0°C. The final temperature of the mixture is 26.6°C. The following data is known.


Data

c _{water}	$4.2 \times 10^3 \mathrm{J kg}^{-1} \mathrm{K}^{-1}$
$c_{\rm iron}$	$4.5 \times 10^2 \mathrm{J kg}^{-1} \mathrm{K}^{-1}$

$c_{\rm iro}$	$4.5 \times 10^2 \mathrm{Jkg}^{-1}\mathrm{K}^{-1}$	
Calc	culate the mass of the iron cube, correct to the	nearest gram. Show your working.
	g	
_	estion 4 (3 marks)	
Con	sider the absorption and emission of electrom	agnetic radiation at Earth's surface.
a.	Circle the correct words to complete the fol	lowing statement. 2 marks
	· · · · · · · · · · · · · · · · · · ·	ce has a (longer / shorter) wavelength than e, which has a (higher / lower) frequency.
b.	Only a very small percentage of radiation e	mitted by Earth reaches space.
	What happens to the majority of the radiation	on emitted by Earth? 1 mark


Question 5 (10 marks)

An ammeter and voltmeter are connected across a variable supply. Figure 2 shows the current versus voltage graph for resistors A and B.

a.	Is resistor A or resistor B ohmic? Explain your answer.	2 mark

Resistors A and B are connected to a variable DC supply, as shown in Figure 3. The two resistors are connected in series. The voltage drop across resistor A is 2.0 V.

What is the magnitude of the current flowing through resistor B? Explain your answer.	2 marks
mA	

Resistors A and B are then connected in parallel, as shown in Figure 4. The potential difference across resistor A is $2.0\ V$.

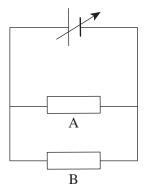


Figure 4

Calculate the current flowing through the variable DC supply. Show your working.	3 ma
mA	
Calculate the total resistance of the circuit. Show your working.	3 m
, c	
Ω	

Question 6 (4 marks)

Figure 5 shows a combination circuit consisting of four resistors and a 12.0 V DC supply. The current flowing through the 4.0 Ω resistors is 1.0 A.

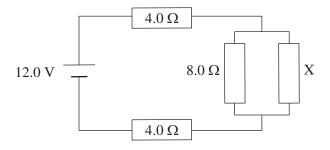


Figure 5

Calculate the value of the unknown resistor. Show your working.
Ω

Question 7 (6 marks)

The characteristics of a light-dependent resistor (LDR) are shown in Figure 6.

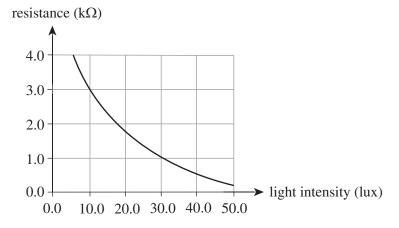


Figure 6

The LDR and a fixed resistor, R, are connected in a circuit, as shown in Figure 7.

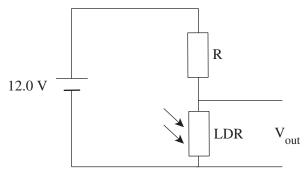


Figure 7

a.	Assume that the magnitude of V_{out} is 3.0 V when the light intensity is 10 lux.	
	Calculate the resistance of resistor R. Show your working.	3 mark
	$k\Omega$	

b.	Assume that the potential difference across the LDR is 1.2 V and the resistor is fixed.	
	Calculate the light intensity. Show your working.	3 marks
	lux	

Question 8	(7	marks)
-------------------	----	--------

A school staffroom has a kettle rated $240\ V$, $1600\ W$. It is used for approximately $90\ minutes$ a day, five days a week.

How many kilowatt hours of energy are being transferred each week? Show your working.	2 m
kWh	
The electricity bill for the kettle was \$32.51. The tariff per kilowatt hour is 25 cents.	
How many weeks was the bill charging for? Show your working.	2 m
woodra	
weeks	
The circuit supplying the kettle has a 10.0 A fuse.	
Will the kettle blow the fuse when operating normally? Support your answer	
with calculations.	3 m

Question	9	(3)	marks)
----------	---	-----	--------

A radioactive nucleus decays to form plutonium-239 and a beta particle, as shown in the following decay equation.

$${}_{Z}^{A}X \rightarrow {}_{94}^{239}Pu + {}_{-1}^{0}\beta$$

a. What are the values of A and Z	$\mathbf{\hat{Z}}$ A and \mathbf{Z} ?	of A	values	the	at are	What	a.
--	---	------	--------	-----	--------	------	----

2 marks

b. Identify element X in this equation.

1 mark

Question 10 (8 marks)

A Geiger counter was used to measure the decay of a sample of an unknown radioisotope over a period of 10 minutes. The results are shown in Table 1.

Table 1

Time (min)	Activity (counts per minute)
0.0	499
1.0	251
2.0	123
3.0	63
4.0	30
5.0	14
6.0	6
7.0	3
8.0	2
9.0	2
10.0	1

a. On the axes provided below, plot the activity versus time graph for the sample.

What is meant by the term 'half-life'?	1 mark
Use the graph plotted in part a. to determine the half-life of the unknown radioisotope.	1 mark
minutes 12.0 Cl	2 1
What is the activity expected to be at 150 seconds? Show your working.	2 marks
counts per minute	

Question 11 (4 marks)

Complete Table 2.

Table 2

Radiation	Mass (amu)	Charge (C)	Speed	Ionising ability
α		+2	10% of <i>c</i>	
$oldsymbol{eta}^-$	1 1800			
γ				low

Question 12 (9 marks)

A typical stimulated nuclear fission reaction is shown in the equation below.

$$^{235}_{92}\mathrm{U} + ^{1}_{0}\mathrm{n} \rightarrow ^{236}_{92}\mathrm{U} \rightarrow ^{144}_{56}\mathrm{Ba} + ^{89}_{Z}\mathrm{X} + \mathrm{Y}^{1}_{0}\mathrm{n}$$

What are the values of Y and Z? Show your working.	4
Y =	
Z =	
Identify element X in this equation.	1
Assume that 160 MeV is released in the fission reaction.	
Calculate the mass defect. Show your working.	4

Question 13 (8 marks)

a.

i.

The energy levels of a hydrogen atom are shown in Figure 8.

Use a calculation to support your answer.

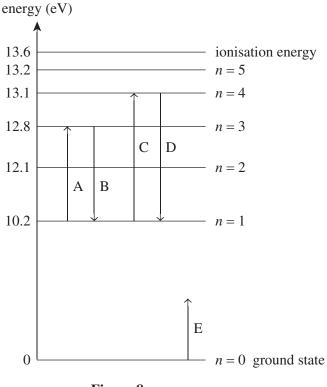


Figure 8

Which arrow (A–E) corresponds to an absorption of a photon of energy 2.6 eV?

ii.	Which arrow (A–E) corresponds to an emission of photon energy of 4.64×10^{-19} J?	
114	Use calculations to support your answer.	3 r

2 marks

Is arrow E possible? Explain your answer.	3 mark

END OF QUESTION AND ANSWER BOOKLET

Trial Examination 2022

VCE Physics Unit 1

Written Examination

Formula Sheet

Instructions

This formula sheet is provided for your reference.

A question and answer booklet is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

PHYSICS FORMULAS

specific heat	$Q = mc\Delta t$
latent heat	Q = mL
Wien's law	$\lambda_{\text{max}}T = 2.9 \times 10^{-3} \text{ mK}$
Stefan-Boltzmann law	$P = \sigma T^4$ where Stefan–Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^4$
first law of thermodynamics	$\Delta U = Q - W$
mass-energy equation	$E = mc^2$
power	$P = \frac{E}{t}$ or $P = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ or $P = Fv$
electrical charge	Q = It
electrical work	W = QV
voltage	V = IR
power	P = VI
resistors in series	$R_{\rm T} = R_1 + R_2 \dots$
resistors in parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} \dots$
efficiency	efficiency (%) = $\frac{\text{useful energy output}}{\text{energy input}} \times 100$

Data

speed of light in a vacuum	$c = 3.0 \times 10^8 \text{ m s}^{-1}$
1 eV	$1.6 \times 10^{-19} \mathrm{J}$
charge on the electron	$e = 1.6 \times 10^{-19} \mathrm{C}$

Prefixes/Units

$p = pico = 10^{-12}$	$n = nano = 10^{-9}$	$\mu = \text{micro} = 10^{-6}$	$m = milli = 10^{-3}$
$k = kilo = 10^3$	$M = mega = 10^6$	$G = giga = 10^9$	$t = tonne = 10^3 \text{ kg}$

The value in the brackets indicates the mass number of the longest-lived isotope.

Periodic table of the elements

2 He 4.00 helium	Ne 20.2 neon	18 Ar 39.9 argon	36 Kr 83.8 krypton	54 Xe 131.3 xenon	86 Rn (222) radon	0g (294) oganesson
				53 I 126.9 iodine		
	8 0.16.0 0xygen	32.1 sulfur	34 Se 79.0 selenium	52 Te 127.6 tellurium	84 P0 (210) polonium	116 LV (292)
	N 14.0 nitrogen	15 P 30.1 phosphorus	33 AS 74.9 arsenic	Sb 121.8 antimony	83 Bi 209.0 bismuth	115 Mc (289) moscovium
	carbon	28.1 silicon	32 Ge 72.6 germanium	S 118.7	82 Pb 207.2 lead	114 F1 (289) flerovium
	10.8 boron	13 A1 27.0 aluminium	Ga 69.7 gallium	L 114.8 indium	81 T1 204.4 thallium	113 N (280) nihonium
			30 Zn 65.4 zinc	Cd 112.4 cadmium	80 Hg 200.6 mercury	Cn (285) copernicium
			29 C u 63.5 copper	Ag 107.9 silver	79 Au 197.0 blog	Rg (272)
	nt it		28 S8.7 nickel	46 Pd 106.4 palladium	78 Pt 195.1	110 DS (271) darmstadtium
	symbol of element name of elecment		27 Co 58.9 cobalt	Rh 102.9 rhodium	77 Ir 192.2 iridium	109 Mt (268) meitnerium
]	26 Fe 55.8 iron	Ru 101.1 ruthenium	76 OS 190.2 osmium	108 HS (267) hassium
	er 79 Au Ss 197.0		25 Mn 54.9 manganese	43 Tc (98)	75 Re 186.2 rhenium	107 Bh (264) bohrium
	atomic number relative atomic mass		24 C r 52.0 chromium	42 M0 96.0 molybdenum	74 W 183.8 tungsten	Sg (266) seaborgium
	at relative		23 V 50.9 vanadium	N 92.9 niobium	73 Ta 180.9 tantalum	105 Db (262)
			22 Ti 47.9 titanium	40 Zr 91.2 zirconium	72 Hff 178.5 hafnium	104 Rf (261) rutherfordium
			Sc 45.0 scandium	39 X 88.9 yttrium	57–71 Ianthanoids	89–103 actinoids
	Be 9.0 beryllium	12 Mg 24.3 magnesium		Sr 87.6 strontium	56 Ba 137.3 barium	88 Ra (226) radium
1.0 hydrogen	Li 6.9 lithium	11 Na 23.0 sodium	19 K 39.1 potassium	37 Rb 85.5 rubidium	55 CS 132.9 caesium	87 Fr (223) francium

71 Lu 175.0 lutetium	103	Ľ	(262)	lawrencium
$egin{array}{c} oldsymbol{Y} oldsymbol{Y} oldsymbol{1} \ & 173.1 \ & ext{ytterbium} \end{array}$	102	S N	(259)	nobelium
$\overset{69}{\Gamma}_{\overset{168.9}{\text{m}}}$	101	Md	(258)	mendelevium
68 Er 167.3 erbium	100	Fm	(257)	fermium
67 H0 164.9 homium	66	Es	(252)	einsteinium
66 Dy 162.5 dysprosium	86	Ct	(251)	californium
65 Tb 158.9 terbium	26	Bk	(247)	berkelium
Gd 157.3 gadolinium	96	Cm	(247)	curium
63 Eu 152.0 europium	95	Am	(243)	americium
Sm 150.4 samarium	94	Pu	(244)	plutonium
61 Pm (145) promethium	66	d	(237)	neptunium
Nd 144.2 neodymium	92		238.0	uranium
$\mathbf{Pr}_{140.9}$	91	Pa	231.0	protactinium
58	06	Th	232.0	thorium
57 La 138.9 lanthanum	68	Ac	(227)	actinium

END OF FORMULA SHEET

Trial Examination 2022

VCE Physics Unit 1

Written Examination

Multiple-choice Answer Sheet

Student's Name:	
Teacher's Name:	
Instructions	
Marks will not be deducted for incorrect answers No mark will be given if more than one answer is	completed for any question.
All answers must be completed like this example:	A B C D

Use pencil only

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.