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Part I - Multiple choice answers 
 

1.  E  7.  A  13.  D  19.  D  25.  B   

2.  E  8.  E  14.  C  20.  C  26.  D 

3.  B  9.  E  15.  E  21.  D  27.  D 

4.  D  10. D  16.  B  22.  A  28.  E 

5.  C  11. B  17.  D  23.  E  29.  E 

6.  D  12. C  18.  A  24.  A  30.  D 
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Part I - Multiple choice solutions 

 

 
Question 1 
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We have vertical asymptotes given by 
a

xaxx
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 is, that 0,1 and 0 −==+=  

We have a horizontal asymptote given by 0=y  

The answer is E. 
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The answer is E. 
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The answer is B. 

 

Question 4 
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The answer is D. 

 

Question 5 
 

We are looking for 3 points which are equidistant from the origin and spaced 
3

2π
 apart.  The 3 

which satisfy these requirements are E, I and M. 

The answer is C. 

Question 6 

Using De Moivre's theorem, we have )5
3

2
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The answer is D. 
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Question 7 
 

Since the coefficients of the terms in )(zP  are not all real, the conjugate root theorem does not 

apply.  If iz 5−  is a factor, then i5  is a solution and 0)5( =iP .  So options B and C are correct. 
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So the roots of the equation are 2 and 5 ±i .  So, options D and E are correct and clearly option A 

is not correct.  The answer is A. 
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The answer is E. 

 

Question 9 
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 and vu are linearly dependent then 0 and ,0 21
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The answer is E. 
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The answer is D. 
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Question 11 
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The answer is B. 

 

 

 

Question 12 
 

Since f '(1) is not defined then f(x) is discontinuous at x = 1 or has a “sharp corner” at x = 1.  So 

f(x) has at most one point of discontinuity.  So options A and B are not correct.  The gradient of the 

graph of f '(x), is zero at one point only, that is at x = 0.  We note that the gradient of the function 

f’(x) just to the left of the point where x = 0 is positive and just to the right, it is negative.  So there 

is one point of inflection only.  Also, a stationary point occurs when f '(x)=0.  This occurs only 

once when x = -1.   

Note that at x = 1, f '(x) is undefined.  The answer is C. 

 

 

Question 13 

0)2('' =f  means that we could have a point of inflection or a stationary point of any kind.  If 

there is a point of discontinuity at 2=x  on the graph of )(xfy =  then )2('fy =  and hence 
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The answer is D. 
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The answer is C. 
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Question 15 
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The answer is E. 
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The answer is B. 

 

 

 

Question 17 
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The answer is D. 
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Question 18 
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The answer is A. 
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The answer is D. 
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The answer is C. 

 

 

 

 

 

 

 

 

 

 

 

 



 

___________________________________________________________________________ 

THE HEFFERNAN GROUP 2000                           Specialist Maths  Trial Exam 1 solutions 

7
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The answer is D. 

 

 

 

Question 22 
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The answer is A. 
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The answer is A. 
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Question 25 
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The answer is B. 

 

Question 26 
 

We need to make allowance for that part of the area that falls below the x axis. 

So, the required area is given by  

∫∫ ++−−++−
5

4

2

4

0

2 )82()82( dtttdttt  

The answer is D. 

 

Question 27 

The resultant force acting on the body is given by 
~
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The answer is D. 
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The answer is E. 
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Question 29 
 

From the diagram, we have  
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The answer is E. 
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The answer is D. 
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PART II - short answer solutions 
 

Question 1 
 

{ }
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Question 2 
 

If ai is a solution then iaiaiaa 004024146 234 +=+−−+  

So,                             0246 and 04014 324 =−=+− aaaa  

                              0)4(6        0)4)(10( 222 =−=−− aaaa  

                               2,02,10 ±==±=±= aaaa  

Since we require solutions which satisfy both these equations, we have 2±=a         (1 mark) 

So, factors. are 2and 2 hence and solutions are 2i and 2 i zizi −+−  

So, 4)2)(2( 2 +=−+ ziziz  is a quadratic factor.                             (1 mark) 

Now, )106)(4(4024146 22234 +−+=+−+− zzzzzxz                ( 1mark) 

                                                         )109)96)((4( 22 +−+−+= zzz  

                                                         )1)3)((4( 22 +−+= zz  

                                                         )3)(3)(2)(2( iziziziz −−+−−+=  

So the solutions are iiz ±±= 3,2                  (1 mark) 
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Question 3 
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Question 4 
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b. 
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Question 5 
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b.  Around the 10 kg weight, we have 
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(1 mark) 
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Question 6 
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Total 20 marks 


