Part 1: Multiple-choice questions

Question 1

If $u = 3 - i$ and $v = 3 + i$ then $\frac{u}{v}$ is equal to

A. $\frac{5}{4-3i}$ **B.** $\frac{4-3i}{5}$ C. $\frac{4-3i}{4}$ D. $-i$ E. -1

Question 2

The angle between the vectors $a = 2i - j$ and $b = 3i + 2j$ is closest to

- 1° $A.$
- 7° **B.**
- C_{\cdot} 30°
- D. 60°
- E. 86°

Question 3

If $f(x) = 2x^2 + 7x - 4$, then the graph of $\frac{1}{f(x)}$ has

- asymptotes at $x = -4$ and $x = \frac{1}{2}$ A.
- asymptotes at $x = 4$ and $x = -\frac{1}{2}$ B_r
- *x*-intercepts at $x = -4$ and $x = \frac{1}{2}$ $C.$
- a maximum at the point $\left(-\frac{7}{4},\frac{81}{8}\right)$ D.

E. a minimum at the point
$$
\left(-\frac{7}{4}, -\frac{8}{81}\right)
$$

The Argand diagram shown is the graph of

A.
$$
\left\{z: Arg z = \frac{\pi}{3}\right\}
$$

\n**B.**
$$
\left\{z: Arg z = -\frac{\pi}{3}\right\}
$$

\n**C.**
$$
\left\{z: Arg z = \frac{2\pi}{3}\right\}
$$

\n**D.**
$$
\left\{z: Im z - \sqrt{3} Re z = 0\right\}
$$

\n**E.**
$$
\left\{z: Im z + \sqrt{3} Re z = 0\right\}
$$

Question 5

 $(1+i)^5$ can be expressed in polar form as

A. $2\sqrt{2}cis\left(\frac{5\pi}{4}\right)$ **B.** $4\sqrt{2}cis\left(-\frac{3\pi}{4}\right)$ C. $32cis\left(\frac{\pi}{4}\right)$ D. $32cis\left(-\frac{3\pi}{4}\right)$ **E.** $4\sqrt{2}$ cis $\left(\frac{\pi}{4}\right)$

Question 6

If $\text{Sec}^{-1}x = 4.2$, then the value of x is

- A. undefined
- **B.** -0.49
- C_{\cdot} -0.87
- D. -1.15
- E. -2.04

An antiderivative of $\frac{2}{1-3x}$, $x > \frac{1}{3}$ is

A. $-\frac{2}{3}\log_e(1-3x)$, $x < \frac{1}{3}$ **B.** $-\frac{2}{3}\log_e(1-3x), x>\frac{1}{3}$ **C.** $2 \log_e (1-3x), x > \frac{1}{3}$

D.
$$
\frac{6}{(1-3x)^2}
$$
, $x > \frac{1}{3}$
E. $-\frac{3}{2}\log_e(1-3x)$, $x > \frac{1}{3}$

Question 8

The derivative of $x\sin^{-1}(2x)$ with respect to x is $\frac{2x}{\sqrt{1-4x^2}} + \sin^{-1}(2x)$. It follows that an antiderivative of Sin⁻¹(2x) is

$$
A. \qquad \int x \sin^{-1}(2x) dx - \int \frac{2x}{\sqrt{1-4x^2}} dx
$$

$$
B. \qquad \int x \sin^{-1}(2x) dx + \int \frac{2x}{\sqrt{1-4x^2}} dx
$$

C.
$$
x\sin^{-1}(2x) - \int \frac{2x}{\sqrt{1-4x^2}} dx
$$

D.
$$
x\sin^{-1}(2x) + \int \frac{2x}{\sqrt{1-4x^2}} dx
$$

E.
$$
x\sin^{-1}(2x) - \frac{2x}{\sqrt{1-4x^2}}
$$

Ouestion 9

The region enclosed by the curves with equations $f(x) = \sqrt{x}$ and $g(x) = x^3$ is rotated about the x -axis. The exact value of the solid obtained is given by

Ouestion 10

The position vector, $r(t)$, in metres, of a particle at time t is given by $r(t) = 2t i + 5\cos(2t) j$. The Cartesian equation of the path followed by the particle is

 \mathbf{A} . $x=2t$ **B.** $y = 5\cos(2t)$ **C.** $y = 5x$ **D.** $y = 5 \cos(x)$ **E.** $y = 5 \cos\left(\frac{x}{2}\right)$

Ouestion 11

The trapezoidal rule with two equal intervals is used to approximate the area enclosed by the curve, $f(x) = \sqrt{x-1}$ and the *x*-axis between the lines $x = 2$ and $x = 4$. The value of this estimate, correct to three decimal places is

- \mathbf{A} . 1.439
- **B.** 1.448
- C. 1.452
- D. 2.878
- E. 3.439

A unit vector parallel to $2 \frac{i - 3}{i} \frac{j}{n}$ is

A.
$$
\sqrt{13}\left(2i-3i\right)
$$

\nB. $\frac{1}{\sqrt{13}}\left(2i-3i\right)$
\nC. $-\frac{1}{\sqrt{13}}\left(2i+3i\right)$
\nD. $\frac{1}{\sqrt{5}}\left(2i-3i\right)$
\nE. $\frac{1}{\sqrt{13}}\left(2i+3i\right)$

Question 13

The equation of the hyperbola shown below is

5 $1)^2$ *x* $\frac{1}{(x-1)^2}$ expressed in partial fractions has the form

A. $\frac{a}{x-1}$ *x b* $\frac{x}{-1} + \frac{z}{x-1}$ **B.** *a x b* $(x-1)^2$ $(x-1)$ $\frac{1}{(x-1)^2}$ **C.** *a x b* $\frac{x}{(x-1)^2}$ **D.** $\frac{a}{x-1}$ *x b* $\frac{x}{-1} + \frac{z}{x+1}$ **E.** *a x* $bx + c$ $\frac{a}{(x-1)} + \frac{bx+c}{(x-1)^2}, \ b \neq 0$

Question 15

The vector projection of *a* $\ddot{\sim}$ perpendicular to *b* $\ddot{\sim}$ is given by

A.
$$
\left(a \cdot \hat{b}\right)\hat{b}
$$

\n**B.** $a - \left(a \cdot \hat{b}\right)b$
\n**C.** $a - \left(a \cdot \hat{b}\right)\hat{b}$
\n**D.** $\left(a \cdot \hat{b}\right)\hat{b} - a$
\n**E.** $\left(a \cdot \hat{b}\right)\hat{b} - a$
\n**E.** $\left(a \cdot \hat{b}\right)\hat{b} - a$
\n**g**

Question 16

Which of the following is **not** a solution of the differential equation $\frac{d^2y}{dx^2} + y = 4e^x$ 2 $\frac{y}{2} + y = 4$

- **A.** $y = 2e^x \sin x$
- **B.** $y = 2e^x \cos x$
- **C.** $y = e^{2x} + \cos x$
- **D.** $y = 2e^x + \sin x$
- **E.** $y = 2e^x + \cos x$

If
$$
y = \text{Cos}^{-1} \left(\frac{7}{x} \right)
$$
, $x > 7$, then $\frac{dy}{dx} =$
\n**A.** $-\frac{1}{\sqrt{49 - x^2}}$
\n**B.** $-\frac{7x}{\sqrt{x^2 - 49}}$
\n**C.** $-\frac{x}{\sqrt{x^2 - 49}}$
\n**D.** $\frac{7x}{\sqrt{x^2 - 49}}$
\n**E.** $\frac{7}{x\sqrt{x^2 - 49}}$

Question 18

The graph of $y = \csc\left(x - \frac{\pi}{4}\right) + 2$, for $0 \le x \le 2\pi$, has turning points at

A. $\left(\frac{\pi}{4},3\right)$ and $\left(\frac{\pi}{4},3\right)$ **B.** $\left(\frac{3\pi}{4}, 1\right)$ and $\left(\frac{3\pi}{4}, -1\right)$ **C.** $\left(\frac{3\pi}{4},3\right)$ and $\left(\frac{7\pi}{4},1\right)$ **D.** $\left(\frac{\pi}{4}, 1\right)$ and $\left(\frac{5\pi}{4}, -1\right)$ **E.** $\left(\frac{\pi}{4},3\right)$ and $\left(\frac{5\pi}{4},1\right)$

An object is moving such that its position vector *r t* $\ddot{\sim}$ (*t*) is given by $r(t) = 4\sin(2t) i + 3t j$ $r(t) = 4\sin(2t) i + 3t j$. The magnitude of the velocity vector in m/s at $t = \frac{\pi}{6}$ seconds is

A.
$$
\sqrt{41}
$$

\n**B.** $\sqrt{57}$
\n**C.** $\sqrt{12 + \frac{\pi^2}{4}}$
\n**D.** 5
\n**E.** 7

Question 20

Euler's method, with a step size of 0.2 is used to solve the differential equation *dy* $\frac{dy}{dx} = x \log_e x$ with $y = 3$ at $x = 1$. The value obtained for y at $x = 1.4$, correct to four decimal places, is

- **A.** 3.0365
- **B** 3.0438
- **C.** 3.0665
- **D.** 3.0875
- **E.** 3.1380

Question 21

The radius of a circular oil slick is increasing at a rate of 2 m/min. When the radius is 8 m, the rate of increase in m^2/m in of the area of the oil slick is

- A. 4π
- $B. 8\pi$
- $C. 16\pi$
- D. 32π
- **E.** 128π

Luiji leaves his campsite, C, and walks in a direction of NE for 4 km to B. He then heads N50°W until he reaches his destination at D. Luiji can tell from his compass that his destination of D is at a bearing of N20°W relative to his previous campsite at C. The distance, d km from C to D is given by

Question 23

The region enclosed by the curve $y = \frac{3}{1+x^2}$, the straight line $y = 1$ and the y-axis, is rotated about the y -axis to form a solid of revolution. The volume of this solid, in cubic units is given by

The velocity-time graph for a particle moving in a straight line is shown below. The total distanc*e*, in metres, travelled by the particle in 15 seconds is

If P is the mid-point of *AC* \rightarrow and Q is the mid-point of *BD* \rightarrow , in order to prove that the diagonals of a parallelogram bisect each other, it needs to be shown that

A. *AP AQ* \rightarrow \rightarrow . $AQ = 0$

B.
$$
\overrightarrow{AP} \cdot \overrightarrow{PQ} = 0
$$

$$
C. \qquad \overrightarrow{AP} = \overrightarrow{AQ}
$$

$$
D. \qquad |\overrightarrow{BD}| = \frac{1}{2} |\overrightarrow{AC}|
$$

E.
$$
\overrightarrow{AP} = \overrightarrow{BQ}
$$

A body of mass 2 kg is acted on by two forces, one of magnitude 3 Newtons acting due South and the other of magnitude 4 Newtons acting due East. The magnitude, in m/s^2 , of the resulting acceleration is

A. 2.5 **B.** $2\sqrt{5}$ **C.** $2\sqrt{7}$ **D.** 14 **E.** 24

Question 27

A block of mass 4.0 kg slides down a rough slope inclined at 30∞ to the horizontal. The block is sliding with an acceleration of 2 m/s². The magnitude of the acceleration due to gravity is 9.8 m/s². The magnitude of the frictional force between the block and the rough surface is

A. 11.6

- **B.** 19.6
- **C.** 25.9
- **D.** 27.6
- **E.** 31.2

Question 28

A person of mass 64 kg stands in a lift accelerating downwards at a magnitude of 1.5 m/s². The magnitude of the acceleration due to gravity is 9.8 m/s^2 . The reaction force, in Newtons, of the lift floor on the person is closest to

- **A.** 96
- **B.** 531
- **C.** 544
- **D.** 627
- **E.** 723

A particle of mass 3 kg is moving with a velocity of $3 i + 4 j$ m/s. The magnitude in kg m/s, of the momentum of the particle is

- **A.** 9 **B.** 12 **C.** 15 **D.** 21
- **E.** 75

Question 30

A box of mass 5 kg is pulled at a constant speed along a rough horizontal surface, by a force of 5 newtons acting at an angle of 30 $^{\circ}$ to the horizontal. The acceleration due to gravity is 9.8 m/s². The magnitude of the frictional force is closest to

PART II

Short-answer Questions

Question 1

Using the substitution $u = \sqrt{x}$, find $\int \frac{\sqrt{x}}{x}$ $\int \frac{\sqrt{x}}{x-4} dx$

a. Show that the subset of the complex plane defined by $\{z: |z+1|+|z-1|=6\}$ can be

expressed in Cartesian form as
$$
\frac{x^2}{9} + \frac{y^2}{8} = 1
$$

3 marks

b. Sketch $\{z: |z+1|+|z-1|< 6\}$, shading the required region.

A cricket ball is thrown upwards from the top of a 15 metre high building, with a speed of 4 m/s. Find, correct to one decimal place, the speed of the cricket ball when it strikes the ground.

The rate of cooling of a body is proportional to the excess of its temperature above that of its surroundings. This relationship can be expressed in the form:

$$
\frac{dT}{dt} = -k(T - T_0),
$$

where T_0 is the temperature of the surroundings, and *T* is the temperature of the body.

A body at a temperature of 25∞ is placed in a coolroom of temperature 10∞. After 5 minutes the temperature of the body has cooled to 18∞. Find the temperature of the body, correct to one decimal place, after a further 3 minutes have passed.

Two particles of mass m_1 and m_2 are connected by a light string that passes over a smooth pulley respectively. The coefficients of friction of the two surfaces are μ_1 and μ_2 .

If the system is on the point of moving to the left, i.e. is about to slide down the plane, express *m m* 1 2

in terms of θ_1 , θ_2 , μ_1 and μ_2 .

