Part 1: Multiple-choice questions

Question 1

If u = 3 - i and v = 3 + i then $\frac{u}{v}$ is equal to

A. $\frac{5}{4-3i}$ B. $\frac{4-3i}{5}$ C. $\frac{4-3i}{4}$ D. -iE. -1

Question 2

The angle between the vectors $\underline{a} = 2 \underbrace{i}_{\sim} - \underbrace{j}_{\sim}$ and $\underbrace{b}_{\sim} = 3 \underbrace{i}_{\sim} + 2 \underbrace{j}_{\sim}$ is closest to

- **A.** 1°
- **B.** 7°
- C. 30°
- **D.** 60°
- **E.** 86°

Question 3

If $f(x) = 2x^2 + 7x - 4$, then the graph of $\frac{1}{f(x)}$ has

- A. asymptotes at x = -4 and $x = \frac{1}{2}$
- **B.** asymptotes at x = 4 and $x = -\frac{1}{2}$
- **C.** *x*-intercepts at x = -4 and $x = \frac{1}{2}$
- **D.** a maximum at the point $\left(-\frac{7}{4}, \frac{81}{8}\right)$

E. a minimum at the point
$$\left(-\frac{7}{4}, -\frac{8}{81}\right)$$

The Argand diagram shown is the graph of

A.
$$\left\{z: \operatorname{Arg} z = \frac{\pi}{3}\right\}$$

B. $\left\{z: \operatorname{Arg} z = -\frac{\pi}{3}\right\}$
C. $\left\{z: \operatorname{Arg} z = \frac{2\pi}{3}\right\}$
D. $\left\{z: \operatorname{Im} z - \sqrt{3} \operatorname{Re} z = 0\right\}$
E. $\left\{z: \operatorname{Im} z + \sqrt{3} \operatorname{Re} z = 0\right\}$

Question 5

 $(1+i)^5$ can be expressed in polar form as

A. $2\sqrt{2}\operatorname{cis}\left(\frac{5\pi}{4}\right)$ B. $4\sqrt{2}\operatorname{cis}\left(-\frac{3\pi}{4}\right)$ C. $32\operatorname{cis}\left(\frac{\pi}{4}\right)$ D. $32\operatorname{cis}\left(-\frac{3\pi}{4}\right)$ E. $4\sqrt{2}\operatorname{cis}\left(\frac{\pi}{4}\right)$

Question 6

If $Sec^{-1}x = 4.2$, then the value of *x* is

- A. undefined
- **B.** -0.49
- **C.** –0.87
- **D.** -1.15
- E. –2.04

An antiderivative of $\frac{2}{1-3x}$, $x > \frac{1}{3}$ is

A. $-\frac{2}{3}\log_e(1-3x), \ x < \frac{1}{3}$ B. $-\frac{2}{3}\log_e(1-3x), \ x > \frac{1}{3}$ C. $2\log_e(1-3x), \ x > \frac{1}{3}$ D. $\frac{6}{(1-3x)^2}, \ x > \frac{1}{3}$

E.
$$-\frac{3}{2}\log_e(1-3x), x > \frac{1}{3}$$

Question 8

The derivative of $x \sin^{-1}(2x)$ with respect to x is $\frac{2x}{\sqrt{1-4x^2}} + \sin^{-1}(2x)$. It follows that an antiderivative of $\sin^{-1}(2x)$ is

$$A. \qquad \int x \operatorname{Sin}^{-1}(2x) dx - \int \frac{2x}{\sqrt{1-4x^2}} dx$$

$$\mathbf{B.} \qquad \int x \operatorname{Sin}^{-1}(2x) dx + \int \frac{2x}{\sqrt{1 - 4x^2}} dx$$

C.
$$x \operatorname{Sin}^{-1}(2x) - \int \frac{2x}{\sqrt{1 - 4x^2}} dx$$

D.
$$x \operatorname{Sin}^{-1}(2x) + \int \frac{2x}{\sqrt{1 - 4x^2}} dx$$

E.
$$x \operatorname{Sin}^{-1}(2x) - \frac{2x}{\sqrt{1 - 4x^2}}$$

The region enclosed by the curves with equations $f(x) = \sqrt{x}$ and $g(x) = x^3$ is rotated about the *x*-axis. The **exact value** of the solid obtained is given by

Question 10

The position vector, r(t), in metres, of a particle at time *t* is given by $r(t) = 2t i + 5\cos(2t) j$. The Cartesian equation of the path followed by the particle is

A. x = 2tB. $y = 5\cos(2t)$ C. y = 5xD. $y = 5\cos(x)$ E. $y = 5\cos(\frac{x}{2})$

Question 11

The trapezoidal rule with two equal intervals is used to approximate the area enclosed by the curve, $f(x) = \sqrt{x} - 1$ and the *x*-axis between the lines x = 2 and x = 4. The value of this estimate, correct to three decimal places is

- A. 1.439
- **B.** 1.448
- C. 1.452
- D. 2.878
- E. 3.439

A unit vector parallel to $2 \underset{\sim}{i} - 3 \underset{\sim}{j}$ is

A.
$$\sqrt{13} \left(2 \stackrel{i}{\sim} - 3 \stackrel{j}{\sim} \right)$$

B. $\frac{1}{\sqrt{13}} \left(2 \stackrel{i}{\sim} - 3 \stackrel{j}{\sim} \right)$
C. $-\frac{1}{\sqrt{13}} \left(2 \stackrel{i}{\sim} - 3 \stackrel{j}{\sim} \right)$
D. $\frac{1}{\sqrt{5}} \left(2 \stackrel{i}{\sim} - 3 \stackrel{j}{\sim} \right)$
E. $\frac{1}{\sqrt{13}} \left(2 \stackrel{i}{\sim} + 3 \stackrel{j}{\sim} \right)$

Question 13

The equation of the hyperbola shown below is

 $\frac{5x}{(x-1)^2}$ expressed in partial fractions has the form

A. $\frac{a}{x-1} + \frac{b}{x-1}$ B. $\frac{a}{(x-1)^2} + \frac{b}{(x-1)^2}$ C. $\frac{a}{x-1} + \frac{b}{(x-1)^2}$ D. $\frac{a}{x-1} + \frac{b}{x+1}$ E. $\frac{a}{x-1} + \frac{bx+c}{(x-1)^2}, b \neq 0$

Question 15

The vector projection of a_{\sim} perpendicular to b_{\sim} is given by

Question 16

Which of the following is **not** a solution of the differential equation $\frac{d^2y}{dy^2} + y = 4e^x$

- A. $y = 2e^x \sin x$
- **B.** $y = 2e^x \cos x$
- C. $y = e^{2x} + \cos x$
- **D.** $y = 2e^x + \sin x$
- E. $y = 2e^x + \cos x$

If
$$y = \cos^{-1}\left(\frac{7}{x}\right)$$
, $x > 7$, then $\frac{dy}{dx} =$
A. $-\frac{1}{\sqrt{49-x^2}}$
B. $-\frac{7x}{\sqrt{x^2-49}}$
C. $-\frac{x}{\sqrt{x^2-49}}$
D. $\frac{7x}{\sqrt{x^2-49}}$
E. $\frac{7}{x\sqrt{x^2-49}}$

Question 18

The graph of $y = \csc\left(x - \frac{\pi}{4}\right) + 2$, for $0 \le x \le 2\pi$, has turning points at

A. $\left(\frac{\pi}{4}, 3\right)$ and $\left(\frac{\pi}{4}, 3\right)$ B. $\left(\frac{3\pi}{4}, 1\right)$ and $\left(\frac{3\pi}{4}, -1\right)$ C. $\left(\frac{3\pi}{4}, 3\right)$ and $\left(\frac{7\pi}{4}, 1\right)$ D. $\left(\frac{\pi}{4}, 1\right)$ and $\left(\frac{5\pi}{4}, -1\right)$ E. $\left(\frac{\pi}{4}, 3\right)$ and $\left(\frac{5\pi}{4}, 1\right)$

An object is moving such that its position vector r(t) is given by $r(t) = 4\sin(2t) \frac{i}{2} + 3t \frac{j}{2}$. The magnitude of the velocity vector in m/s at $t = \frac{\pi}{6}$ seconds is

A. $\sqrt{41}$ B. $\sqrt{57}$ C. $\sqrt{12 + \frac{\pi^2}{4}}$ D. 5 E. 7

Question 20

Euler's method, with a step size of 0.2 is used to solve the differential equation $\frac{dy}{dx} = x \log_e x$ with y = 3 at x = 1. The value obtained for y at x = 1.4, correct to four decimal places, is

- A. 3.0365
- B 3.0438
- **C.** 3.0665
- D. 3.0875
- E. 3.1380

Question 21

The radius of a circular oil slick is increasing at a rate of 2 m/min. When the radius is 8 m, the rate of increase in m^2/min of the area of the oil slick is

- **A**. 4π
- **B.** 8π
- **C**. 16π
- **D**. 32π
- E. 128π

Luiji leaves his campsite, C, and walks in a direction of NE for 4 km to B. He then heads N50°W until he reaches his destination at D. Luiji can tell from his compass that his destination of D is at a bearing of N20°W relative to his previous campsite at C. The distance, *d* km from C to D is given by

A.	$\frac{d}{\sin 45^\circ} = \frac{1}{5}$	4 sin 50°
B.	$\frac{d}{\sin 95^\circ} = \frac{1}{5}$	4 5 in 20°
C.	$\frac{d}{\sin 95^\circ} = \frac{1}{5}$	4 sin 40°
D.	$\frac{d}{\sin 85^\circ} = \frac{1}{5}$	4 5 50°
E.	$\frac{d}{\sin 85^\circ} = \frac{1}{5}$	4 sin 30°

Question 23

The region enclosed by the curve $y = \frac{3}{1+x^2}$, the straight line y = 1 and the *y*-axis, is rotated about the *y*-axis to form a solid of revolution. The volume of this solid, in cubic units is given by

The velocity-time graph for a particle moving in a straight line is shown below. The total distance, in metres, travelled by the particle in 15 seconds is

If P is the mid-point of $\stackrel{\rightarrow}{AC}$ and Q is the mid-point of $\stackrel{\rightarrow}{BD}$, in order to prove that the diagonals of a parallelogram bisect each other, it needs to be shown that

A. $\overrightarrow{AP} \cdot \overrightarrow{AQ} = \mathbf{0}$

B.
$$\overrightarrow{AP} \cdot \overrightarrow{PQ} = \mathbf{0}$$

C.
$$\overrightarrow{AP} = \overrightarrow{AQ}$$

D.
$$|\overrightarrow{BD}| = \frac{1}{2}|\overrightarrow{AC}|$$

E.
$$\vec{AP} = \vec{BQ}$$

A body of mass 2 kg is acted on by two forces, one of magnitude 3 Newtons acting due South and the other of magnitude 4 Newtons acting due East. The magnitude, in m/s^2 , of the resulting acceleration is

A.	2.5
B.	$2\sqrt{5}$
C.	$2\sqrt{7}$
D.	14
E.	24

Question 27

A block of mass 4.0 kg slides down a rough slope inclined at 30° to the horizontal. The block is sliding with an acceleration of 2 m/s². The magnitude of the acceleration due to gravity is 9.8 m/s^2 . The magnitude of the frictional force between the block and the rough surface is

Α.	11.6
----	------

- **B.** 19.6
- **C.** 25.9
- D. 27.6
- E. 31.2

Question 28

A person of mass 64 kg stands in a lift accelerating downwards at a magnitude of 1.5 m/s^2 . The magnitude of the acceleration due to gravity is 9.8 m/s^2 . The reaction force, in Newtons, of the lift floor on the person is closest to

- A. 96
- **B.** 531
- **C.** 544
- D. 627
- E. 723

A particle of mass 3 kg is moving with a velocity of $3 \underbrace{i}_{i} + 4 \underbrace{j}_{i}$ m/s. The magnitude in kg m/s, of the momentum of the particle is

- A. 9
 B. 12
 C. 15
 D. 21
- E. 75

Question 30

A box of mass 5 kg is pulled at a constant speed along a rough horizontal surface, by a force of 5 newtons acting at an angle of 30° to the horizontal. The acceleration due to gravity is 9.8 m/s^2 . The magnitude of the frictional force is closest to

PART II

Short-answer Questions

Question 1

Using the substitution $u = \sqrt{x}$, find $\int \frac{\sqrt{x}}{x-4} dx$

a. Show that the subset of the complex plane defined by $\{z: |z+1| + |z-1| = 6\}$ can be

expressed in Cartesian form as
$$\frac{x^2}{9} + \frac{y^2}{8} = 1$$

3 marks

b. Sketch $\{z: |z+1| + |z-1| < 6\}$, shading the required region.

A cricket ball is thrown upwards from the top of a 15 metre high building, with a speed of 4 m/s. Find, correct to one decimal place, the speed of the cricket ball when it strikes the ground.

		2 mark
2u	estion 4	
•	Show that $\int (\tan x) dx = -\log_e \cos x + c$	
		1 marl
).	Hence find $\int \tan^3(x) dx$	1 11141 F
	J the (co) and	
		2 marks

The rate of cooling of a body is proportional to the excess of its temperature above that of its surroundings. This relationship can be expressed in the form:

$$\frac{dT}{dt} = -k(T - T_0),$$

where T_0 is the temperature of the surroundings, and *T* is the temperature of the body.

A body at a temperature of 25° is placed in a coolroom of temperature 10° . After 5 minutes the temperature of the body has cooled to 18° . Find the temperature of the body, correct to one decimal place, after a further 3 minutes have passed.

Two particles of mass m_1 and m_2 are connected by a light string that passes over a smooth pulley respectively. The coefficients of friction of the two surfaces are μ_1 and μ_2 .

If the system is on the point of moving to the left, i.e. is about to slide down the plane, express $\frac{m_1}{m_2}$

in terms of θ_1 , θ_2 , μ_1 and $\mu_2.$

