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Suggested Solutions Part I 
 

 

Question 1 
 

y ====
x
3 ++++ b

3

x 2
====
x
3

x 2
++++
b
3

x 2
==== x ++++

b
3

x2
 

 

The denominator is zero when  x ==== 0 , so  x ==== 0  is a vertical asymptote. 
As  x →→→→ ±±±± ∞∞∞∞ y →→→→ x , so  y ==== x   is an oblique asymptote. 

Both  x ==== 0  and  y ==== x   are asymptotes. 

Answer:  D. 

 

Question 2 
 

The ellipse has centre  −−−−3, 1(((( ))))  semi-major axis is 3 , semi-minor is  1, the general form is 
 

(x −−−− h)
2

a2
++++
(y −−−− k)

2

b2
==== 1 

 

with  h ==== −−−−3 k ==== 1 a ==== 3 and b ==== 1  so the equation is   
(x ++++ 3)2

9
++++
(y −−−−1)2

1
==== 1 . 

Answer:  E. 
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Question 3 
 

Given  f (x) ==== a(x −−−− α )(x ++++ β) where a>>>> 0  this graph crosses the x-axis at  
x ==== α and x ==== −−−−β . 
 

 

 

 

      -β                             α 
 

 

 

the graph of  
1

f (x)
 

 

 

 

    -β                                α 
 

 

 

has vertical asymptotes at  x ==== α and x ==== −−−−β .  So alternatives  A.  and  B.  are incorrect. 

f (x) ==== a x
2 ++++ (β −−−− α ) x ++++ αβ(((( )))) 

f '(x) ==== a 2x ++++ (β −−−− α )(((( )))) ==== 0  when 

2x ++++ (β −−−− α ) ==== 0  

2x ==== α −−−− β(((( )))) 

x ====
α −−−− β
2

 

So  
1

f (x)
  has a local maximum at  x ====

α −−−− β
2

. 

Answer:  C. 

 

Question 4 
 

The range of  y ==== Cos−−−−1
x is 0,π[[[[ ]]]] 

The range of  f (x) ==== a ++++ b Cos−−−−1
(cx)   is dilated by  b  and translated by  a , 

its range is  a , a ++++ bπ[[[[ ]]]] 
(the value of  c  has no effect on the range). 

Answer:  E. 
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Question 5 
 

Given  
 ɶ
a = 7

ɶ
b = 3

ɶ
a.

ɶ
b = 2, now  

 
 ɶ
a −

ɶ
b

2

= (
ɶ
a −

ɶ
b).(

ɶ
a−

ɶ
b)  

  
 
=

ɶ
a .

ɶ
a −

ɶ
b .

ɶ
a −

ɶ
a .

ɶ
b +

ɶ
b .

ɶ
b  

  
 
=

ɶ
a

2

− 2
ɶ
a .

ɶ
b+

ɶ
b
2

 

  ==== 49−−−− 4 ++++ 9 

 
 ɶ

a −
ɶ
b

2

= 54  

so 
 ɶ
a −

ɶ
b = 54  

Answer:  C. 

 

Question 6 
 

Given  P (2, −−−− 8, 10) Q(x , 4, −−−− 5)   then 

 
OP
� ���(

= 2
ɶ
i − 8

ɶ

j +10
ɶ
k OQ

� ���

= x
ɶ
i + 4

ɶ

j − 5
ɶ
k  

 
PQ
� ���

=OQ
� ���

−OP
� ���

= (x − 2)
ɶ
i +12

ɶ

j −15
ɶ
k  

 

Checking each alternative: 

 

A When  
 
x = 2 PQ

� ���

=12
ɶ

j −15
ɶ
k   so it is parallel to the YZ  plane.   

 Alternative  A  is correct. 

B When 
 
x = −1,  OP

� ���

= −2 OQ,
� ����

 so OP
� ���

 and OQ
� ���

 are linearly dependent 

 Alternative B is incorrect. 

 

C When 
 
x = −3,  OQ

� ���

= 9 +16 + 25 = 50 = 5 2  

 

D When 
 
x = 3,  OQ

� ���

= 9 +16+ 25 = 50 = 5 2 . So alternatives C and D are correct. 

 

E If  
 
OP
� ���

 is perpendicular to  OQ
� ���

 , 

 

 

OP
� ���

i OQ
� ���

= 0

∴2x − 32 − 50 = 0

∴2x = 82 ⇒ x = 41

  So alternative E is correct. 

 

Answer:  B. 
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Question 7 
 
      N 

 

 

 

 

      
              

 ɶ
j  

            W          E 

                0           
 ɶ
i  

      30°               100            B 
               15 

 

              A 

 

      S 
 

 

OA
� ���(

=100 sin 30°
ɶ
i −100 cos30°

ɶ

j = 50
ɶ
i − 50 3

ɶ

j

AB
� ���

(

= 15
ɶ
k

∴OB
� ���

=OA
� ���

+ AB
� ���

= 50
ɶ
i − 50 3

ɶ

j +15
ɶ
k

 

Answer:  B. 

 

 

Question 8 
 

If  
 ɶ
a +

ɶ
b +

ɶ
c =

ɶ
0 the vectors

ɶ
a ,

ɶ
b and

ɶ
c   form the sides of a triangle. 

 

 

      

              

                     

            

 

 

 

 

The angles given are the exterior angles.  

So the interior angles are π − α  , π − β  and π − γ  
⇒ π − α  + π − β  +  π − γ = π
⇒ 3π − π = α + β +γ

⇒ α + β + γ = 2π

 

 

Answer:  E. 

 

 

a

 

b

 

c

α  

β  

γ  
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Question 9 
 

Given  sec(x) ==== −−−−5 so sec (x) ====
1

cos(x)
==== −−−−5   so   cos(x) ==== −−−−

1

5
, but

π
2

<<<< x <<<< π  so  x 

is the 2
nd
 quadrant.  

 
      

                 y 

     5 

          b 

                 x 

     -1 

 

 

 

 

by Pythagorus’ theorem: 1
2 ++++ b 2 ==== 52  

   b
2 ==== 25 −−−−1 ==== 24  

   b ==== 24 ==== 4 ×××× 6 ==== 2 6  

 Now   cosec (x) ====
1

sin(x)
====
1
2 6
5

====
5

2 6
××××

6

6
====
5 6

12
 

since sin(x)  is positive in the 2nd quadrant. 

 

Answer:  E. 

 

 

Question 10 
 

Let   
 ɶ
a = 2

ɶ
i − 3

ɶ

j + 4
ɶ
k  , the scalar resolute of  

 ɶ
a   in the direction of  

 ɶ
b   is  

 ɶ
a .

ɶ
b̂ = 2 6  . 

The vector resolute of  
 ɶ
a   perpendicular to  

 ɶ
b   is  

 ɶ
a − (

ɶ
a .

ɶ
b̂)

ɶ
b̂ =

ɶ

j + 2
ɶ
k . 

 

 
 
2
ɶ
i − 3

ɶ

j + 4
ɶ
k − 2 6

ɶ
b̂ =

ɶ

j + 2
ɶ
k  

   
 
2 6

ɶ
b̂ = 2

ɶ
i − 3

ɶ

j + 4
ɶ
k( )− (

ɶ

j + 2
ɶ
k)  

   
 
2 6

ɶ
b̂ = 2

ɶ
i − 4

ɶ

j + 2
ɶ
k  

   so    
 ɶ
b̂ =

1

6
(
ɶ
i − 2

ɶ

j +
ɶ
k )  

Answer:  C. 
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Question 11 
 

P (z) ==== z
3 ++++ az

2 ++++ bz ++++ c given that P (α −−−− iβ) ==== 0  and  a, b and c are real then 

 

A P (α ++++ iβ) ==== 0  is correct by the conjugate root theorem. 

B P (z) has three roots (1 pair of complex conjugates and one root).  This is 

 correct. 

C This is correct. 

D Now  u ==== α ++++ iβ v ==== α −−−− iβ  

 u ++++ v ==== 2α  uv ==== α 2 −−−− i
2β 2 ==== α 2 ++++ β 2

  so 

 z
2 −−−− (u ++++ v) z ++++ uv ==== 0  

 z
2 −−−− (sum of the roots) z ++++ (product of the roots) ==== 0  

  so    z
2 −−−− 2αz ++++ (α 2 ++++ β 2

) ==== 0   is a factor of  P (z). 

 Option D is INCORRECT. 

E is correct since 

  z
3 ++++ az 2 ++++ bz ++++ c ==== 0 

   ==== z
2 −−−− 2αz ++++ (α 2 ++++ β 2

)(((( ))))(z ++++ d) ==== 0  

 so d(α 2 ++++ β 2
) ==== c  

   d ====
c

α 2 ++++ β 2 and P (−−−−d) ==== 0  

 

Answer:  D. 
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Question 12 
 

The shaded region is the intersection of the inside of a circle with centre at the origin and 

radius  2 , with the region above the line  y ==== −−−−x . 
 

The circle is  zz ≤ r
2 = 4  (where  r  is the radius).   

since if z ==== x ++++ iy z ==== x −−−− iy    so 

 zz ==== x
2 −−−− i

2
y
2 ==== x

2 ++++ y
2 ==== r

2
 

The line is  y ≥≥≥≥ −−−− x , if z ==== x ++++ iy  

Re(z) ==== x and Im(z) ==== y  

so Im(y) ++++ Re(z) ≥≥≥≥ 0 
 

Answer:  A. 

 

 

Question 13 
 

 
                                 
 

 

 

 

                                   

 

 

                                   

 

 

Now  z ==== −−−−a −−−− bi    

a and b are real positive  

−−−−π <<<< Arg(z) ≤≤≤≤ π  

tanθ ====
b

a
>>>> 0 θ ==== Tan−−−−1 b

a

    
    

    
     

Arg(z) ==== −−−−π ++++ θ  

 ==== −−−−π ++++ Tan −−−−1 b

a

    
    

    
     

Answer:  D. 
 

 

Question 14 
 

Solving z
3 ++++ a3i ==== 0  since   i2 ==== −−−−1 

  z
3 ==== −−−−a3i ==== a

3
i
3
, one answer is: 

  z ==== ai where a >>>> 0  

There are three answers one of which is D are all equally spaced around the circle. The roots 

are D, H and L 

 

Answer:  B. 

−−−−b  

Re(z)  

Im(z)  

−−−−a
 

θ  

Arg(z)  
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Question 15 
 

 ɶ
r (t ) = cos2 (t )

ɶ
i + cos(2t )

ɶ

j  

x ==== cos2 ( t)   

y ==== cos(2 t) ==== 2 cos2 (t) −−−− 1 

y ==== 2x −−−− 1 , this is a straight line. 

 

Answer:  A. 

 

 

Question 16 
 

y ==== Cos−−−−1 5x

4

    
    

    
    ==== Cos−−−−1 u

4

    
    

    
    where u ==== 5x   Chain Rule 

dy

du
====

−−−−1

16 −−−− u 2
du

dx
==== 5  

dy

dx
====

−−−−5

16 −−−− 25x2
, now at x ==== 0 mT ====

dy

dx x==== 0

==== f '(0) ====
−−−−5
4
 

at  x ==== 0 y ==== Cos−−−−1
(0) ====

π
2
so P 0,

π
2

    
    

    
      and the gradient of the normal is  

4

5
 , 

so the equation of the normal is:   y −−−−
π
2

====
4

5
(x −−−− 0)  

 or y ====
4x

5
++++

π
2
   

 

Answer:  A. 
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Question 17 
 

y ==== Tan−−−−1 3

4 x

    
    

    
    ==== Tan−−−−1

u where u ====
3

4 x
====
3

4
x

−−−−1
 

dy

du
====

1

1 ++++ u2
du

dx
==== −−−−

3

4
x

−−−−2 ====
−−−−3
4x 2

  

dy

dx
====
dy

du

du

dx
  (chain rule) 

==== −−−−
3

4x 2
1

1 ++++ 9

16x2

    

    
    

    

    
     

==== −−−−
3

4x 2
1

16x2 ++++ 9
16x2

    

    
        

    

    
         

==== −−−−
3

4x 2
16x

2

16x 2 ++++ 9
    
    
    

    
    
     

====
−−−−12

9 ++++16x2
 

 

Answer:  A. 

 

 

Question 18 

cos
3
(2x) sin(2x) dx

0

π
4∫∫∫∫  

let u ==== cos(2x)
du

dx
==== −−−−2 sin(2x)  

changing terminals, when 

x ====
π
4

u ==== cos
π
2

    
    

    
    ==== 0    and when x ==== 0 u ==== cos(0) ==== 1 

==== u
3 ×××× −−−−

1

2

du

dx
.dx

1

0

∫∫∫∫ ==== −−−−
1

2
u
3
du ====

1

0

∫∫∫∫
1

2
u
3
du

0

1

∫∫∫∫  

Answer:  E. 
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Question 19 

 y ==== (A ++++ Bx )e
−−−−2x

satisfies
d
2
y

dx2
++++ 4

dy

dx
++++ 4y ==== 0 

 
dy

dx
==== Be

−−−−2x −−−− 2(A ++++ Bx)e
−−−−2 x
 

 ==== (B −−−− 2A) −−−− 2Bx(((( ))))e−−−−2x
 

 
d
2
y

dx2
==== −−−−2 (B−−−− 2A) −−−− 2Bx(((( ))))e−−−−2x −−−− 2Be−−−−2x

 

  ==== (4A −−−− 4B) ++++ 4Bx(((( ))))e−−−−2 x
 

so 
d
2
y

dx2
++++ 4

dy

dx
++++ 4y  

  ==== 4A −−−− 4B ++++ 4Bx ++++ 4B −−−− 8A −−−− 8Bx ++++ 4A ++++ 4Bx(((( ))))e−−−−2x ==== 0  
 

If  B ==== 0 and A ==== 3 or A ==== 5   so alternatives  A.  and  B.  both satisfy the differential  
equation. 

If  A = 0 and B = 2 or if A = 4 and B = 2  so alternatives  C.  and  D.  both satisfy the  
differential equation. 

Alternative  E.  does not satisfy the differential equation. 

 

Answer:  E. 

 

 

Question 20 
 

y1 ====
cos(2x)

2x −−−−1
  using a graphic calculator, in the Radians mode we find the graph crosses the 

x-axis at  x ≈≈≈≈ 2.36 , the area is: 
 

cos(2x)

2x −−−−1
2

2.36

∫∫∫∫ dx ++++
cos(2x)

2x −−−−1
2.36

2

∫∫∫∫ dx  

 ==== A1 ++++ A2  

but A1 ==== −−−−0.0376 and A2 ==== 0.0796   the shaded area is: 

 A ==== A1 ++++ A2  

 ==== 0.0376 ++++ 0.0796 

 ==== 0.1173 
 

Answer:  D. 
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Question 21 
 

Rearranging to  
dy

dx
====
cos 2x(((( ))))
2x −−−−1

   with the calculator in the radians mode, using  a  

PRGM Euler 

 

Y1 ====
cos 2x(((( ))))
2x −−−−1

x0 ==== 0 y0 ==== −−−−1 h ==== 0.2  

y (0.4) ==== −−−−1.507  
 

Answer:  D. 

 

Question 22 
 

d

dx
x loge (4 + x)( )= loge (4 + x) +

x

4 + x
 

so it follows that: 

log e(4 + x) +
2x

4 + x





∫ dx = x loge (4 + x)  

loge (4 + x) dx = x loge (4 + x) −
x

4 + x
dx∫∫  

 = x loge (4 + x) −
x + 4 − 4
4 + x






dx∫  

 = x loge (4 + x) − 1 −
4

4 + x






dx∫  

 
= x loge (4 + x)− x + 4 loge (4 + x)

= (x + 4) loge (x + 4)− x
 

Answer:  C. 
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Question 23 
 

Since for 

x <<<< 0   
dy

dx
<<<< 0        and      0 <<<< x <<<< 1    

dy

dx
>>>> 0  

while at  x ==== 0  
dy

dx
==== 0   the graph has a local minimum at  x ==== 0 

and  at   x ==== 4   
d
2
y

dx2
==== 0 

 

The graph has a stationary point of inflexion at x ==== 4   
 

Answer:  B. 

 

 

Question 24 
 
 

 

 

 

                                               

 

 

 

  

 

 

 

 

                                               

 

 m = 12 kg P = 11.65 N  

 µ ==== 0.1 

 N ==== mg  

 N ==== 12 ×××× 9.8 

 ==== 117.6 N  

Now µN ==== 0.1 ×××× 117.6 

 ==== 11.76 N  

since µN =11.76 > P =11.65  

The suitcase remains at rest.  

 

Answer:  E. 

 

 

 

 

 

 

 

N 

P FR 

mg 
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Question 25 
 
             N 

  

            
 ɶ
F1  

 

         
 ɶ
j  

 

    W     
 ɶ
i                E 

 

 

 

    
 ɶ
F2                    S 

 

 
 ɶ
F1 = −3

ɶ
i + 3

ɶ

j   F1 ==== 3 2  

 
 ɶ
F2 = −4

ɶ
i − 4

ɶ

j   F 2 ==== 4 2  

 
 ɶ
R =

ɶ
F1 +

ɶ
F2 = −7

ɶ
i −

ɶ

j = 2
ɶ
a  

so 
 ɶ
a = −

1

2
(7

ɶ
i −

ɶ

j)  

 
 ɶ
a =

1

2
49 +1 =

50

2
=
5 2

2
 

 

Answer:  B. 

 

 

Question 26 
 

Resolving vertically gives:   T1 sinβ ++++ T2 sinα −−−− mg ==== 0  
so alternative  B.  is correct. 

 

Resolving horizontally gives:  T1 cosβ −−−− T2 cosα ==== 0 

so T1 cosβ ==== T2 cos α  

T1
T2

====
cosα
cos β

====
L2
α
L1
α

====
L2
L1
  so alternatives  A.  and  C.  are correct. 

The vector equation  
 ɶ
T1 +

ɶ
T2 + m

ɶ

g =
ɶ
0   is true. 

Alternative  D.  is correct.  Alternative  E.  is INCORRECT. 

The shorter string carries more tension. 

 

Answer:  E.  
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Question 27 
 

Let   y1 ==== 4e
−−−− x
2 and y2 ==== 3 sin

x

2

    
    

    
      the volume is 

V ==== π (y1
2 −−−− y2

2
)dx

0

b

∫∫∫∫ ==== π 16e
−−−− x −−−− 9sin2

x

2

    
    

    
    

    
        

    
        

0

b

∫∫∫∫ dx  

Answer:  A. 

 

Question 28 
 

Since v >>>> 0 for 0 ≤≤≤≤ t <<<< c     and   v ==== 0 for t ==== c  

v <<<< 0 for t >>>> c     Alternative  B.  is correct. 

Answer:  B. 

 

Question 29 
 

Given the initial conditions   t ==== 0 x ==== 0 v ==== v0  

Now 
dv

dx
==== 1 so v

dv

dx
==== a ==== v    Alternative  A.  is correct. 

Since   
dv

dx
==== 1 integrating wrt x  

v ==== 1 dx ==== x ++++ c but v ==== v0 when x ==== 0∫∫∫∫  

so c = v0     and v ==== x ++++ v0    Alternative  B.  is correct. 

Since a ====
dv

dt
==== v    this has the solution   v ==== v0e

t
   Alternative  C.  is correct. 

Alternative  D.  is the constant acceleration formula   v
2 ==== v0

2 ++++ 2v x   is FALSE. 

Alternative  E.  is correct since  v ====
dx

dt
==== v0e

t
integrating wrt t  

x ==== v0e
t
dt∫∫∫∫ ==== v0e

t ++++ c  

but when t ==== 0 x ==== 0     so   0 ==== v0 ++++ c so c ==== −−−−v0  

and   x ==== v0 e
t −−−− 1(((( )))) 

Answer:  D. 
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Question 30 
 

Resolving perpendicular to the incline gives 

 

(1) N −−−− mg cosθ ==== 0  

 resolving downwards parallel to the plane gives 

(2) mg sin θ −−−− µN ==== ma  

from (1) N ==== mg cosθ into (2) 

mg sin θ −−−− µmg cosθ ==== ma  

a ==== g(sinθ −−−− µ cosθ)    Alternative  A.  and B.  are correct. 

The acceleration is constant, using u ==== 0 t ==== T s ==== D 

v
2 ==== u

2 ++++ 2as   gives 

v
2 ==== 0 ++++ 2g(sin θ −−−− µ cos θ) D  

so v ==== 2gD(sin θ −−−− µ cos θ)     Alternative  C.  is correct. 

Using: s ====
u ++++ v

2

    
    

    
    t gives  

D ====
0 ++++ V
2

    
    

    
    T ====

VT

2
 

so T ====
2D

V
 

Alternative  D.  is correct. 

 

Alternative  E.  is false, terminal or limiting velocity occurs in a situation when falling 

vertically with air resistance proportional to the velocity. 

 

Answer:  E. 
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Question 1 
 

Let  u ==== x ==== x
1
2  

du

dx
====
1

2
x

−−−−1
2 ====

1

2 x
   so 2 du ====

1

x
dx  

terminals x ==== 4 u ==== 2 

 x ==== 0 u ==== 0  

cos x

x
dx

0

4

∫∫∫∫  ==== 2 cos(u) du
0

2

∫∫∫∫  

  ==== 2 sinu
0

2

] ==== 2sin 2(((( ))))−−−− 2sin 0(((( ))))  

  ==== 2 sin(2)           

 

 

Question 2 
 

i. x ==== 2t−−−− sin 2t(((( )))) y ==== 1−−−− cos 2t(((( )))) 0 ≤≤≤≤ t ≤≤≤≤ 2π  
                     

 

                             2 

 

 

                                               π           2π          3π           4π      x 

 

 

ii. 
 ɶ
r t( )= 2t − sin 2 t( )( )

ɶ
i + 1− cos 2t( )( )

ɶ

j 0 ≤ t ≤ 2π  

 ɶ
ɺr (t ) = 2 − 2 cos(2t)( )

ɶ
i + 2 sin(2t )

ɶ

j  

 
 
ɺ
ɶ
r (t) = (2 − 2 cos 2t )2 + (2 sin 2t)2  

 ==== 4 −−−− 8 cos (2t) ++++ 4 cos2 (2t) ++++ 4 sin2 (2t)  

 ==== 8 −−−− 8 cos (2t)  

 = 8(1− cos (2t))    since  cos 2A(((( )))) ==== 1−−−− 2sin 2 A(((( ))))  

 = 8(2 sin
2
(t))     and 2sin

2
A(((( )))) ==== 1−−−− cos 2A(((( ))))  

 ==== 4 sin t   

 so c ==== 4   
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Question 3 
 

 

     

 

      

                      

 

      

        

                                        

 

 
Now OA

� ���(
= BO

� ���(
=

ɶ
a  and OC

� ���(
= DO

� ���(
=

ɶ
c  

 
AC
� ���

= AO
� ���

+ OC
� ���

=
ɶ
c −

ɶ
a  

 
AD
� ���

= AO
� ���

+OD
� ���

= −
ɶ
a −

ɶ
c  

 
CB
� ���

= CO
� ���

+OB
� ���

= −
ɶ
a −

ɶ
c ⇒ AD

� ���

= CB
� ���

 

 

consider 

  

 

AC
� ���(

iCB
� ���(

= (
ɶ
c −

ɶ
a)i(−

ɶ
a −

ɶ
c)

= −
ɶ
c.

ɶ
a+

ɶ
a.

ɶ
a −

ɶ
c.

ɶ
c +

ɶ
a.

ɶ
c

=
ɶ
a
2

−
ɶ
c
2

= 0 since 
ɶ
a =

ɶ
c  (both are radii of the circle)

 

 

so 
 
AC

→

is perpendicular to CB
� ���

(  and AD=
→

CB
→

 

 ABCD  is rectangle 

 

  

A 

C 

D 

B 

O 
 ɶ
a  

 ɶ
c  
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Question 4 
 

i. u ==== 2 2 (1−−−− i) Arg(u) ==== −−−−
π
4
 

so u ==== 4cis −−−−
π
4

    
    

    
     

And arg(u
8
)= 8 × −

π
4

= −2π

But Arg(u8 ) = −2π + 2π = 0
 

 

ii. u
2 = 4 cis −

π
4













2

 

 = 16 cis −
π
2






 

 ==== −−−−16i 
 

 

iii. z
3 ++++ 16iz ==== 0  

 z (z
2 ++++ 16i) ==== 0                                                                             Im(z) 

 z ==== 0 or z 2 ==== −−−−16i  hence from i. and ii. 

z ==== 2 2 (1−−−− i) ==== 4 cis −−−−
π
4

    
    

    
    ==== z1                   

                         z ==== 2 2 (−−−−1++++ i) ==== 4 cis
3π
4

    
    

    
    ==== z2   

 note that  z2 ==== −−−−z1   these are  not conjugates. 

Re(z) 
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Question 5 
 

a. 
 ɶ
a = −2

ɶ
i + y

ɶ

j + 5
ɶ
k  

 ɶ
a = 4 + y2 + 25 = 6  

 29 + y
2 = 6  

 29 + y
2 = 36  

 y
2 ==== 7  

 y ==== ±±±± 7  both  ±  are both acceptable answers. 
 

 

b. 

 

cosβ = −
7

6
=

y

ɶ
a

=
y

29+ y2
 

 6y ==== −−−− 7 29 ++++ y 2(((( )))) 
 36y

2 ==== 7 29 ++++ y
2(((( )))) 

 ==== 7 ×××× 29 ++++ 7 ×××× y
2
  

 29 y
2 ==== 7 ×××× 29  

          y ==== ±±±± 7      but 

 y ==== −−−− 7  since  y <<<< 0     it is an obtuse angle, there is only one answer. 
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Question 6 
 

 

to find the first x intercept 

cos
2x

3

    
    

    
    ==== 0  

2x

3
====

π
2
 

               x ====
3π
4
 

 

Now the volume      Vx ==== π y
2
dx

a

b

∫∫∫∫  

   ==== π 16 cos
2 2x

3

    
    

    
    dx0

3π
4∫∫∫∫  

   ==== 8π 1++++ cos
4 x

3

    
    

    
    

    
        

    
        

0

3π
4∫∫∫∫ dx  

   ==== 8π x ++++
3

4
sin

4 x

3

    
    

    
    

    

    
    

    

    
    
0

3π
4

  

   ==== 8π
3π
4

++++
3

4
sin(π ) −−−− 0 ++++

3

4
sin 0

    
    

    
    

    

    
    

    

    
     

   ==== 6π 2
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Question 7 
 

i.         

 

ii.         isolating the particles and resolving around each individually, 

resolving perpendicular to the plane around the mass m1  

 N1 −−−− m1g cosα ==== 0  so that   (1) N1 ==== m1g cosα      

 resolving perpendicular to the plane around the mass m2  

N2 −−−− m2g cosα ==== 0    so that    (2) N2 ==== m2g cosα  

 resolving parallel and up the plane around the mass m1  gives 

 T ++++ µ1N1 −−−− m1g sinα ==== 0  using   (1)  gives  (3)   T ==== m1g(sinα −−−− µ1cosα)  

 resolving parallel and up the plane around the mass m2  gives 

 µ2N2 −−−− T −−−− m2gsinα ==== 0   using (2)  gives  (4)  T ==== m2g(µ2 cosα −−−− sinα)   

 Equating (3) and  (4)  

m1 (sinα −−−− µ1cosα) ==== m2 (µ2cosα −−−− sinα)  

 (m1 ++++ m2)sinα ==== (m1µ1 ++++ m2µ2)cosα  

 tanα ====
m1µ1 ++++ m2µ2

m1 ++++ m2

  shown.       

END OF SUGGESTED SOLUTIONS 
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