Part I: Multiple-choice questions

The equation of the above ellipse is:

A $\frac{x^2}{2} + \frac{y^2}{2}$ $\frac{y}{2} + \frac{y}{3} = 1$ **B** $\frac{x^2}{4} + \frac{y^2}{9}$ $\frac{y}{4} + \frac{y}{9} = 1$ **C** $\frac{x^2}{16} + \frac{y^2}{91}$ $\frac{x}{16} + \frac{y}{81} = 1$ **D** $\frac{x^2}{4} - \frac{y^2}{9}$ $\frac{y}{4} - \frac{y}{9} = 1$ **E** $\frac{x^2}{16} - \frac{y^2}{81}$ $\frac{x}{16} - \frac{y}{81} = 1$

The exact value of $\sin^{-1} \left(\cos \right)$ ∖ $\left(\frac{7\pi}{6}\right)$ Į $\cos\left(\frac{7\pi}{6}\right)$ ∖ $\left(\cos\left(\frac{7\pi}{6}\right)\right)$ Į $\left(\cos\left(\frac{7\pi}{6}\right)\right)$ $\frac{\pi}{\epsilon}$) is:

A
$$
-\frac{\pi}{3}
$$

B $-\frac{\pi}{6}$
C $\frac{\pi}{3}$
D $-\frac{2\pi}{3}$
E $\frac{7\pi}{6}$

Question 3

If
$$
cos(x) = -\frac{2}{3}, \frac{\pi}{2} \le x \le \pi
$$
, then $tan(x)$ is equal to:
\nA $\frac{\sqrt{5}}{2}$
\nB $-\frac{\sqrt{5}}{2}$
\nC $\frac{2}{\sqrt{5}}$
\nD $-\frac{2}{\sqrt{5}}$
\nE $\frac{\sqrt{13}}{2}$

2

If $z^4 - 81 = 0$ then *z* is equal to:

A ±8*i* **B** ±3*i* **C** $\pm 3, \pm 3i$ **D** ±3 **E** ±9

Question 5

If
$$
z = 2cis\left(\frac{5\pi}{6}\right)
$$
 and $w = 5cis\left(\frac{\pi}{3}\right)$, then $Arg(zw)$ is equal to:
\nA $\frac{7\pi}{6}$
\nB $\frac{\pi}{6}$
\nC $\frac{5\pi}{18}$
\nD $-\frac{\pi}{6}$
\nE $-\frac{5\pi}{6}$

Question 6

If $z = 2 + 3i$ and $w = 2 - i$ then $\overline{z}w$ is:

E 7

If $z = -\sqrt{3} + i$ then z^4 is equal to:

A
$$
16cis\left(-\frac{2\pi}{3}\right)
$$

\nB $16cis\left(\frac{625\pi}{1296}\right)$
\nC $16cis\left(\frac{5\pi}{6}\right)$
\nD $10cis\left(\frac{5\pi}{6}\right)$
\nE $9+i$

Question 8

Given that $z \in C$, the shaded region is best described by:

A
$$
{z: z\overline{z} \le 2} \cup {|z-2| < |z+2|}
$$

B
$$
{z: |z| \le 2} \cap {|z - 2i| \ge |z + 2|}
$$

$$
C \qquad \{z: z\overline{z} \leq 2\} \cap \left\{\text{Arg}(z) \geq \frac{\pi}{4}\right\}
$$

$$
D \qquad \{z : |z| \le 2\} \cap \left\{\text{Arg}(z) \ge -\frac{\pi}{4}\right\}
$$

$$
E \qquad \{z: z\overline{z} > 2\} \cup \left\{\text{Arg}(z) < -\frac{\pi}{4}\right\}
$$

- If $\frac{3x-1}{2}$ $x^2 + x - 6$ *x* $x^2 + x$ $\frac{x-1}{x+2}$ is written as the partial fractions $\frac{A}{x+2}$ *B* $\frac{x}{x+3} + \frac{b}{x-2}$ then,
	- $A = 1$ and $B = 2$
	- **B** $A = 3x$ and $B = 0$
	- C $A = -2$ and $B = 3$
	- D A = 2 and B = 1
	- **E** $A = -2$ and $B = -1$

Question 10

The derivative of $x \text{Tan}^{-1}(x)$ with respect to x is $\frac{x}{2}$ $\frac{x}{x^2+1}$ + Tan⁻¹(x) +1 + $Tan^{-1}(x)$. It follows that an anti-derivative of Tan⁻¹ (x) is:

$$
A \qquad \int \text{Tan}^{-1}(x)dx - \frac{x}{x^2 + 1}
$$

- **B** $x\text{Tan}^{-1}(x) \frac{1}{2}\log_e(x^2+1)$
- **C** $x\text{Tan}^{-1}(x) + \int \frac{x}{2}$ *x* $\int \tan^{-1}(x) + \int \frac{x}{2} dx$ + $\int \frac{x}{x^2+1}$
- **D** $x\text{Tan}^{-1}(x) + \log_e(x^2 + 1)$

$$
E \qquad \int x \tan^{-1}(x) dx - \int \frac{x}{x^2 + 1} dx
$$

Using an appropriate substitution $\int_1^3 (2x+1)\sqrt{2x-1} dx$ is equal to:

A $\frac{1}{2} \int_1^5 (u+2) \sqrt{u} du$ **B** $\int_1^5 (u+2)\sqrt{u} du$ **C** $\int_1^3 (u+2)\sqrt{u} du$ **D** $\frac{1}{2} \int_1^3 (u+2) \sqrt{u} du$

$$
E \qquad \frac{1}{2} \int_1^3 (u-2) \sqrt{u} du
$$

Question 12

A volume of revolution is found by rotating the area enclosed by the line $y = x$, the parabola *y* = $2 - x^2$ and the *y*-axis about the *x*-axis.

The volume of revolution formed is equivalent to:

A $\pi \int \left(\left(2 - x^2 \right)^2 - x^2 \right)$ $\int \left(\left(2 - x^2 \right)^2 - x^2 \right) dx$ **B** $\pi \int_0^1 \left(4 + x^4 - x^2\right)$ $\int_0^1 \left(4 + x^4 - x^2\right) dx$ **C** $\pi \int_0^1 (2 - x^2)^2 dx$ **D** $\pi \int_{1}^{2} (2 - x - x^2) dx$ **E** $\pi \int_0^1 \left((2 - x^2)^2 - x^2 \right)$ $\int_0^1 \left(\left(2 - x^2\right)^2 - x^2 \right) dx$

Given *g*(*x x* $(x) = \frac{-}{\sqrt{2}}$ − 2 $4 - x^2$ and *f*(*x*) = *x*. The shaded region in the diagram is bounded by the *y*-axis, $g(x)$, $f(x)$ and the line $x = 1$.

The exact value of the area of the shaded region is:

Question 14

The value of $\int_0^1 \left(e^{x^2} + e^{-x^2}\right) dx$ $\int_0^1 \left(e^{x^2} + e^{-x^2} \right) dx$, correct to four decimal places, is:

- **A** 4.9626
- **B** 3.8271
- **C** 2.9253
- **D** 2.9626
- **E** 8.8126

Using the midpoint rule and one interval, $\int_0^1 \cos(2x) dx$ would be approximated by:

A
$$
cos(2)
$$

\n**B** $\frac{cos(0) + cos(2)}{2}$
\n**C** $cos(1)$
\n**D** $\frac{1}{2}cos(2)$
\n**E** $\frac{1}{2}cos(1)$

Question 16

A tank initially contains 100 litres of water in which is dissolved 20 kg of salt. A salt solution which contains 0.1 kg of salt per litre of water is poured into the tank at a rate of 2 litres/minute. An amount of the solution is simultaneously withdrawn from the tank at the same rate.

Assuming that the mixture is uniform and *x* kg is the amount of salt in the tank at *t* minutes, the differential equation that models this situation is:

A
$$
\frac{dx}{dt} = 0.1 - x
$$

\nB
$$
\frac{dx}{dt} = 0.2 - x
$$

\nC
$$
\frac{dx}{dt} = (0.2 - 2x) \times \frac{20}{100}
$$

\nD
$$
\frac{dx}{dt} = 0.2 - 2x
$$

\nE
$$
\frac{dx}{dt} = 0.2 - \frac{x}{50}
$$

The solution of the equation $\frac{d^2y}{dx^2}$ *dx x* $\frac{2y}{x^2}$ = cos(2*x*) with $\frac{dy}{dx}$ = 0 and *y* = 0 at *x* = 0 is:

A $y = \frac{1}{4}\cos(2x)$ 4 $cos(2x)$ **B** $y = -\frac{1}{4}\cos(2x) +$ 4 $\cos(2x) + \frac{1}{4}$ **C** $y = \frac{1}{4}\cos(2x) -$ 4 $\cos(2x) - \frac{1}{4}$ **D** $y = -\frac{1}{4}\cos(2x)$ 4 $cos(2x)$ **E** $y = -\frac{1}{4}\cos(2x) + \frac{x}{2} + \frac{1}{2}$ 4 2 2 $\cos(2x) + \frac{x}{2} + \frac{1}{4}$

Question 18

The angle between $a = 2i - j + 3k$ and $b = i + 3j - 2k$ is

 $A = 90^\circ$ **B** 60° **C** 120° $D \quad 0^{\circ}$ **E** 30°

Question 19

A boat travels 9 kilometres due north, 6 kilometres in a direction 60°west of north and then 7 kilometres due east. If $\dot{\mathbf{i}}$ and $\dot{\mathbf{j}}$ are unit vectors in the directions east and north respectively, the position vector of the final position of the boat relative to its starting position is exactly:

A
$$
(7-3\sqrt{3})\underline{i} + 12\underline{j}
$$

\nB $11\underline{i} + 3(3+3\sqrt{3})\underline{j}$
\nC $(4+3\sqrt{3})\underline{i} + 12\underline{j}$
\nD $3\underline{k} + 3(3-\sqrt{3})\underline{j}$
\nE $15\underline{i} + 13\underline{j}$

O is the centre of the circle and BT is a tangent.

Let *OT c* $\overrightarrow{OT} = c$ and $\overrightarrow{OB} = b$.

The dot product *OT TB* \rightarrow \rightarrow T B is equal to:

> **A** 90 **B** $\sqrt{c^2 + b^2}$ **C** 0 \mathbf{D} $c.b$ **E** $c \cdot (c + b)$ $\tilde{\sim}$.($\frac{c+b}{2}$

Question 21

The magnitude of $4a + b$ if $a = 2i + j + 5k$ and $b = -4i + j$ is:

A 6 **B** $2\sqrt{11}$ **C** $\sqrt{569}$ **D** $4\sqrt{30}$ **E** 21

Given $a = 6i - 2j + 6k$ and $b = -6i - 2j + k$ the vector resolute of *b* in the direction of *a* is equal to: to:

$$
A = -\frac{13}{\sqrt{19}} \left(6i - 2j + k \atop z - z + z \right)
$$

\n
$$
B = -\frac{13}{\sqrt{19}} \left(-6i - 2j + k \atop z - z \right)
$$

\n
$$
C = \frac{1}{2\sqrt{19}} \left(6i - 2j + 6k \atop z - z \right)
$$

\n
$$
D = -\frac{13}{\sqrt{19}}
$$

\n
$$
E = -\frac{13}{19} \left(3i - j + 3k \atop z - z \right)
$$

Question 23

The position of a body at time *t*, *t* ≥ 0, is given by $r(t) = (t-1)i + 5(t-1)^2 j$. The Cartesian equation of the body's path is represented by:

A $y = 5x^2, x \ge 0$ **B** $y = 5x^2, x \ge -1$ **C** $x = \pm \sqrt{5}y, y \ge 0$ **D** $x = \sqrt{5}y, y \le -1$ **E** $y = \sqrt{5x}, x \ge -1$

Question 24

The position of a particle is given by: $r(t) = (2\sin 2t + 1) i + 3e^t j$ $r(t) = (2\sin 2t + 1) i + 3e^{t} j.$ The speed of the particle at $t = 0$ is:

A $4i + 3j \nightharpoonup i$ \mathbf{B} **C** $4\cos 2t \frac{i}{2} + 3e^t \frac{j}{2}$ **D** 5 **E** $\frac{i+3j}{2}$

If a particle of mass 4 kg is acted on by two forces F_{1} = 2 i + j and F_{2} = 8 i – 5 k , the acceleration of

the particle is:

A $10 i + j - 5k$ **B** $6i - j - 5k$ **C** $2.5i + 0.25j - 1.25k$ **D** 2.806 **E** $\sqrt{126}$

Question 26

A light inelastic string suspended from a horizontal beam has a particle, P, of mass 5 kg attached to it. A horizontal force of 10 N is applied to the particle. This means that the string is θ radians from the vertical.

θ is approximately:

- **A** 11.5346
- **B** 0.2013
- **C** 1.3695
- **D** 78.4654
- **E** 0.4636

A particle moves in a straight line with acceleration of $a = x + 6$ at time *t*. Given that at $x = 1$, $v = 7$, the velocity of the particle is:

A $\pm (x + 6)$ **B** $x^2 + 12x$ $C \t x + 6$ **D** $x^2 + 12x + 36$ **E** 49

Question 28

The following is the velocity-time graph of a particle over a 10 second interval.

The total distance travelled during the 10 second interval is:

- **A** –12
- **B** -24
- **C** 12
- **D** 36
- **E** 60

A block of mass m_1 rests on a rough horizontal table. The coefficient of friction between the block and the table is μ . The block is connected to a second block of mass m_2 by a light inelastic string which passes over a smooth pulley. The mass m_2 hangs vertically.

If the block of mass m_1 is accelerating to the right, then,

- **A** $T \mu m_1 g > m_2 g$
- **B** $T > m_2 g$
- **C** $m_2 < \mu m_1$
- **D** $m_2 > \mu m_1$
- **E** $m_1 g = m_2 g$

Terry is dragging a large box of mass *m* up a ramp. The force she applies to the box is T newtons. The coefficient of friction between the box and the ramp is μ . The normal force exerted by the ramp on the box is N newtons. The diagram which correctly shows all the forces acting on the box is:

E

Part II: Short answer questions

Question 1

Let $f: R \to R$ where $f(x)$ *x* $(x) = \frac{-1}{-1}$ + $\frac{-1}{1+x^2}$.

a i Use calculus to find $f'(x)$.

 \mathbf{i} Find $f'(1)$.

 $(2 + 1 = 3$ marks)

b Hence, use Euler's method to estimate $f(1.01)$.

(1 mark) **Total = 4 marks**

Use calculus to find the exact value of $\int_1^{\sqrt{2}} \frac{1}{\sqrt{2}}$ $\sqrt{4-x^2}$ 2 − ∫ *x dx*.

Question 3

A particle moves so that its position vector at time *t* is given by $r(t)$ = $4\cos t$ i + $4\sin t$ j + $3t$ k $r(t) = 4\cos t \frac{t}{2} + 4\sin t \frac{t}{2} + 3t \frac{t}{2}$, with $t \geq 0$.

a Find its initial speed.

(3 marks)

b Show that the velocity of the particle is always perpendicular to its acceleration.

(3 marks) **Total = 6 marks**

a Shade the region of the complex plane specified by $\{z : |z - 2 + i| \le 2\}$.

(2 marks)

b Shade the region of the complex plane specified by $\{z: 0 \leq A \cdot rg(z+1)$ 4 \leq A rg(z + 1) \leq $\sqrt{ }$ ∤ \mathfrak{l} 1 $\left\{ \right\}$ J $\frac{\pi}{4}$.

Consider the expression $\left(\cos \theta + i \sin \theta \right)^3$ where θ is a real number.

a Use the expression to show that $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$.

(3 marks)

b Hence, or otherwise, find a similar expression for sin 3θ.

(1 mark) **Total = 4 marks**