Victorian Certificate of Education 2004

# SPECIALIST MATHEMATICS Written examination 1 (Facts, skills and applications)

#### Monday 1 November 2004

Reading time: 11.45 am to 12.00 noon (15 minutes) Writing time: 12.00 noon to 1.30 pm (1 hour 30 minutes)

# PART I MULTIPLE-CHOICE QUESTION BOOK

This examination has two parts: Part I (multiple-choice questions) and Part II (short-answer questions). Part I consists of this question book and must be answered on the answer sheet provided for multiple-choice questions.

Part II consists of a separate question and answer book.

You must complete **both** parts in the time allotted. When you have completed one part continue immediately to the other part.

| Structure of book      |                                       |                    |  |
|------------------------|---------------------------------------|--------------------|--|
| Number of<br>questions | Number of questions<br>to be answered | Number of<br>marks |  |
| 30                     | 30                                    | 30                 |  |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, up to four pages (two A4 sheets) of pre-written notes (typed or handwritten) and an approved scientific and/or graphics calculator (memory may be retained).
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

#### Materials supplied

- Question book of 18 pages, with a detachable sheet of miscellaneous formulas in the centrefold and a blank page for rough working.
- Answer sheet for multiple-choice questions.

#### Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Check that your **name** and **student number** as printed on your answer sheet for multiple-choice questions are correct, **and** sign your name in the space provided to verify this.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

#### At the end of the examination

- Place the answer sheet for multiple-choice questions (Part I) inside the front cover of the question and answer book (Part II).
- You may retain this question book.

Students are NOT permitted to bring mobile phones and/or any other electronic communication devices into the examination room.

This page is blank

#### **Instructions for Part I**

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Take the **acceleration due to gravity** to have magnitude  $g \text{ m/s}^2$ , where g = 9.8.

#### **Question 1**

The graph of  $y = \frac{-x^2 + 1}{2x}$  has

- A. no straight line asymptotes.
- **B.** y = 2x as its only straight line asymptote.
- C. x = 0 as its only straight line asymptote.
- **D.** y = 0 and  $y = -\frac{1}{2}x$  as its only straight line asymptotes.
- **E.** x = 0 and  $y = -\frac{1}{2}x$  as its only straight line asymptotes.

#### **Question 2**

The *x*-axis is tangent to an ellipse at the point (1, 0) and the *y*-axis is tangent to the same ellipse at the point (0, -2).

Which one of the following could be the equation of this ellipse?

A. 
$$\frac{(x-1)^2}{4} + (y+2)^2 = 1$$
  
B.  $\frac{(x+1)^2}{4} + (y-2)^2 = 1$   
C.  $(x-1)^2 + \frac{(y+2)^2}{4} = 1$   
D.  $(x+1)^2 + \frac{(y-2)^2}{4} = 1$ 

**E.**  $(x-2)^2 + \frac{(y+1)^2}{4} = 1$ 

Which one of the following is **not** equal to  $\tan\left(\frac{\pi}{5}\right)$ ?

A. 
$$\frac{\sin\left(\frac{\pi}{5}\right)}{\cos\left(\frac{\pi}{5}\right)}$$

**B.** 
$$\frac{1}{\cot\left(\frac{\pi}{5}\right)}$$

C. 
$$\cot\left(\frac{3\pi}{10}\right)$$

$$\mathbf{D.} \quad \frac{2\tan\left(\frac{\pi}{10}\right)}{1-\tan^2\left(\frac{\pi}{10}\right)}$$

$$\mathbf{E.} \quad \frac{2\tan\left(\frac{2\pi}{5}\right)}{1-\tan^2\left(\frac{2\pi}{5}\right)}$$



The graph of  $y = -\sec(a(x - b))$  is shown above for  $0 \le x \le \pi$ . The values of *a* and *b* could be

- **A.**  $a = 1, b = \frac{\pi}{2}$ **B.**  $a = 1, b = \frac{\pi}{4}$
- **C.**  $a = 2, b = \frac{\pi}{2}$
- **D.**  $a = 2, b = \frac{\pi}{4}$
- **E.**  $a = 2, b = -\frac{\pi}{4}$

#### **Question 5**

If z = x + yi, where x and y are non-zero real numbers, which one of the following is a real number?

A.  $\frac{1}{z}$ B.  $\frac{1}{\overline{z}}$ C.  $\frac{1}{z-\overline{z}}$ D.  $\frac{1}{z}-\frac{1}{\overline{z}}$ E.  $\frac{1}{z}+\frac{1}{\overline{z}}$ 

> PART I – continued TURN OVER

If  $\operatorname{Arg}(1 + ai) = -\frac{\pi}{3}$ , then the real number *a* is **A.**  $-\frac{\pi}{\sqrt{2}}$ 

**B.** 
$$-\frac{\sqrt{3}}{2}$$
  
**C.**  $-\sqrt{3}$ 

**D.** 
$$\frac{1}{\sqrt{3}}$$
  
**F**  $\sqrt{3}$ 

#### **Question** 7

P(z) is a polynomial in z of degree 4 with real coefficients.

Which one of the following statements **must** be **false**?

- **A.** P(z) = 0 has no real roots.
- **B.** P(z) = 0 has one real root and three non-real roots.
- C. P(z) = 0 has one (repeated) real root and two non-real roots.
- **D.** P(z) = 0 has two real roots and two non-real roots.
- **E.** P(z) = 0 has four real roots.



The point *W* on the Argand diagram above represents a complex number *w* where |w| = 1.5. The complex number  $w^{-1}$  is best represented by the point

- **A.** *P*
- **B.** *Q*
- **C.** *R*
- **D.** *S*
- **E.** *T*



The shaded region (with boundaries excluded) of the complex plane shown above is best described by

A.  $\left\{z: \operatorname{Arg}(z) > \frac{\pi}{3}\right\}$ B.  $\left\{z: \operatorname{Arg}(z) > \frac{\pi}{3}\right\} \cup \left\{z: \operatorname{Arg}(z) < \frac{\pi}{2}\right\}$ C.  $\left\{z: \operatorname{Arg}(z) > \frac{\pi}{3}\right\} \cap \left\{z: \operatorname{Arg}(z) < \frac{\pi}{2}\right\}$ 

**D.** 
$$\left\{z: \operatorname{Arg}(z) > \frac{\pi}{2}\right\} \cup \left\{z: \operatorname{Arg}(z) < \frac{\pi}{3}\right\}$$

**E.** 
$$\left\{z: \operatorname{Arg}(z) > \frac{\pi}{2}\right\} \cap \left\{z: \operatorname{Arg}(z) < \frac{\pi}{3}\right\}$$

#### **Question 10**

Which one of the following is an antiderivative of  $\frac{1}{x^2 + 16}$ ? A.  $\log_e(x^2 + 16)$ 

- $\mathbf{B.} \quad \frac{1}{2x} \log_e \left( x^2 + 16 \right)$
- C.  $\operatorname{Tan}^{-1}\left(\frac{x}{4}\right)$ D.  $\frac{1}{4}\operatorname{Tan}^{-1}\left(\frac{x}{4}\right)$
- **E.**  $4 \operatorname{Tan}^{-1}\left(\frac{x}{4}\right)$

$$\int_{0}^{a} \left( \sin^{2} \left( \frac{3x}{2} \right) - \cos^{2} \left( \frac{3x}{2} \right) \right) dx \text{ is equal to}$$
  
**A.**  $-\frac{4}{3} \sin \left( \frac{3a}{4} \right)$   
**B.**  $-\frac{1}{3} \sin (3a)$   
**C.**  $\frac{1}{3} \sin (3a)$   
**D.**  $\frac{1}{3} (1 - \sin (3a))$   
**E.**  $-\frac{1}{3} (\cos (3a) - 1)$ 

## Question 12

With a suitable substitution,  $\int_{0}^{\frac{\pi}{3}} \cos^2(x) \sin^3(x) dx$  can be expressed as

A. 
$$\int_{\frac{1}{2}}^{1} u^2 (1-u^2) du$$
  
B.  $\int_{1}^{\frac{1}{2}} u^2 (1-u^2) du$ 

$$\mathbf{C.} \quad \int_{0}^{\frac{\pi}{3}} u^2 \left(1 - u^2\right) du$$

$$\mathbf{D.} \quad -\int_{0}^{\frac{\pi}{3}} u^2 \left(1-u^2\right) du$$

**E.** 
$$-\int_{0}^{\frac{\sqrt{3}}{2}} u^2 (1-u^2) du$$

PART I – continued TURN OVER

An antiderivative of  $\frac{2}{(3-x)^2} - \frac{1}{3-x}$ , for x < 3, is **A.**  $\log_e(x-3) - \frac{2}{x-3}$  **B.**  $\log_e(x-3) + \frac{2}{x-3}$  **C.**  $\log_e(3-x) - \frac{2}{3-x}$  **D.**  $\log_e(3-x) + \frac{2}{3-x}$ **E.**  $-\log_e(3-x) + \frac{2}{3-x}$ 

#### **Question 14**



The graph of y = f(x) is shown above.

Let F(x) be an antiderivative of f(x).

The stationary points of the graph of y = F(x) could be

- A. local maximums at x = 0,  $\pi$  and  $2\pi$ , and local minimums at  $x = \frac{2\pi}{3}$  and  $\frac{4\pi}{3}$
- **B.** stationary points of inflexion at x = 0,  $\frac{2\pi}{3}$ ,  $\pi$ ,  $\frac{4\pi}{3}$  and  $2\pi$ , a local maximum at  $x = \frac{\pi}{2}$ , and a local minimum at  $x = \frac{3\pi}{2}$

C. stationary points of inflexion at x = 0,  $\frac{2\pi}{3}$ ,  $\pi$ ,  $\frac{4\pi}{3}$  and  $2\pi$ , a local minimum at  $x = \frac{\pi}{2}$ , and a local maximum at  $x = \frac{3\pi}{2}$ 

**D.** a stationary point of inflexion at  $x = \pi$ , a local maximum at  $x = \frac{\pi}{2}$ , and a local minimum at  $x = \frac{3\pi}{2}$ 

E. a stationary point of inflexion at  $x = \pi$ , a local minimum at  $x = \frac{\pi}{2}$ , and a local maximum at  $x = \frac{3\pi}{2}$ 

#### The following information relates to Questions 15 and 16.

The graph of  $f:[3,\infty) \to R$ , where  $f(x) = \sqrt{x^2 - 9}$ , is shown below. The shaded region is bounded by this graph, the *x*-axis, and the line with equation x = 5.



#### **Question 15**

The midpoint rule with **two** equal intervals is used to estimate the area of the shaded region. The value obtained, calculated correct to two decimal places, is

- **A.** 4.65
- **B.** 5.06
- **C.** 5.16
- **D.** 5.29
- **E.** 5.80

#### **Question 16**

The shaded region is rotated about the *y*-axis to form a solid of revolution. The shaded region is rotated about the y-axis to form a solid of revolution.

The volume of this solid, in cubic units, is given by

A. 
$$\pi \int_{0}^{4} (y^2 - 9) dy$$
  
B.  $\pi \int_{0}^{4} (34 - y^2) dy$   
C.  $\pi \int_{0}^{4} (y^2 + 9) dy$   
D.  $\pi \int_{0}^{4} (16 - y^2) dy$   
E.  $\pi \int_{0}^{4} (5 - \sqrt{y^2 + 9})^2 dy$ 

The vectors  $\underline{p}$  and  $\underline{q}$  are given by  $\underline{p} = 2\underline{i} + x\underline{j} + 3\underline{k}$  and  $\underline{q} = -4\underline{i} + y\underline{j} - 6\underline{k}$ , where x and y are real numbers. The magnitude of vector  $\underline{p}$  is 4 units, and  $\underline{p}$  and  $\underline{q}$  are parallel.

The values of x and y could be

A.  $x = \sqrt{3}$ ,  $y = -2\sqrt{3}$ B. x = 3, y = -6C.  $x = \sqrt{3}$ ,  $y = 2\sqrt{3}$ D.  $x = \sqrt{29}$ ,  $y = -\sqrt{29}$ E.  $x = -\sqrt{3}$ ,  $y = -2\sqrt{3}$ 

#### **Question 18**

The vectors  $\underline{u}$  and  $\underline{v}$  are given by  $\underline{u} = 3\underline{i} - 4\underline{j} + 5\underline{k}$  and  $\underline{v} = 2\underline{i} + 3\underline{j} - \underline{k}$ .

 $\underline{u}$  (  $\underline{u}-2\,\underline{v}$  ) is equal to

**A.** 20

**B.** 45

**C.** 52

**D.** 72

**E.** 78



The right-angled triangle shown above has sides represented by the vectors a, b and c. Which one of the following statements is **false**?

- **A.**  $|\underline{b}|^2 + |\underline{c}|^2 = |\underline{a}|^2$
- **B.**  $b(a c) = |b|^2$
- C.  $b \cdot (a b) = |b||c|$
- **D.**  $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$
- **E.**  $\mathbf{a} \cdot \mathbf{c} = |\mathbf{a}| |\mathbf{c}| \sin(\theta)$

#### **Question 20**

The position vector of a particle at time t is given by  $\underline{r}(t) = 2\sin(t)\underline{i} + \cos(t)\underline{j}, \ 0 \le t \le \pi$ . The Cartesian equation of the path of the particle is

A.  $y = \cos\left(\sin^{-1}\left(\frac{x}{2}\right)\right), \quad 0 \le x \le 2$ B.  $y = \sqrt{1 - \frac{x^2}{4}}, \quad 0 \le x \le 2$ C.  $\frac{x^2}{2} + y^2 = 1, \quad -2 \le x \le 2$ D.  $\frac{x^2}{4} + y^2 = 1, \quad -2 \le x \le 2$ E.  $\frac{x^2}{4} + y^2 = 1, \quad 0 \le x \le 2$ 

The velocity of a particle at time t,  $t \ge 0$ , is given by  $\dot{t}(t) = 3\sin(2t)\dot{t} + 4\dot{t}$ . The initial position of the particle is given by  $r(0) = \frac{3}{2}i$ . The position vector  $\underline{r}(t)$  of the particle at time *t* is equal to

j

A. 
$$-\frac{3}{2}\cos(2t)\dot{i} + 4t\dot{j}$$
  
B.  $\left(3 - \frac{3}{2}\cos(2t)\right)\dot{i} + 4t\dot{j}$   
C.  $\left(\frac{3}{2} - \frac{3}{2}\cos(2t)\right)\dot{i} + 4t\dot{j}$   
D.  $\frac{3}{2}\cos(2t)\dot{i} + 4t\dot{j}$   
E.  $\left(3 - \frac{3}{2}\cos(2t)\right)\dot{i}$ 

#### **Question 22**

A body of mass 5 kg slides from rest down a smooth plane inclined at an angle of 30° to the horizontal. The acceleration, in  $m/s^2$ , of the body down the plane has magnitude

- $\frac{\sqrt{3}g}{2}$ A.  $\frac{g}{2}$ B.
- **C.** 0

$$\mathbf{D.} \quad \frac{5\sqrt{3}g}{2}$$

 $\mathbf{E.} \quad \frac{5g}{2}$ 

A 10 kg mass is suspended in equilibrium from a horizontal ceiling by two identical light strings. Each string makes an angle of 30° with the vertical as shown below.



The magnitude, in newtons, of the tension in each string is equal to

- **A.** 5*g*
- **B.** 10g
- **C.** 20g

**D.** 
$$\frac{10g\sqrt{3}}{3}$$
  
**E.** 
$$\frac{20g\sqrt{3}}{3}$$

#### **Question 24**

A body of mass 5 kg is acted upon by three concurrent coplanar forces  $\underline{R}$ ,  $\underline{S}$  and  $\underline{T}$ , where  $\underline{R} = 2\underline{i} + \underline{j}$ ,  $\underline{S} = \underline{i} + 10\underline{j}$  and  $\underline{T} = 3\underline{i} - 3\underline{j}$ . The forces are measured in newtons. The magnitude of the acceleration of the body, in m/s<sup>2</sup>, is

- A. 2
- **B.** 4
- **C.** 6
- **D.** 8
- **E.** 10

#### **Question 25**

A balloon is rising vertically at a constant speed of 21 metres per second. A stone is dropped from the balloon when it is h metres above the ground. The stone strikes the ground 10 seconds later.

Assuming that air resistance is negligible, the value of h is

- **A.** 210
- **B.** 280
- **C.** 490
- **D.** 700
- **E.** 770

A body of mass M kg is on a rough plane inclined at an angle to the horizontal. The body, which is on the point of sliding down the plane, is held in equilibrium by a force of magnitude P applied parallel to the plane. There is a normal reaction of magnitude N and a frictional force of magnitude F. All forces are measured in newtons. Which one of the following diagrams shows the forces acting on the body?



#### **Question 27**

A particle is moving in a straight line in such a way that its displacement, x metres, from a fixed origin at time

t seconds is given by  $x = 2.5t + 9\cos\left(\frac{t}{2}\right), t \ge 0.$ 

If the velocity of the particle at time t seconds is v metres per second, then the minimum value of v is

- **A.** -6.5
- **B.** −2
- **C.** 0
- **D.** 2.5
- **E.** 7

Which one of the following differential equations is satisfied by y = sin(2x)?

A. 
$$\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + y = 4\cos(2x)$$
  
B. 
$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 4y = 4\cos(2x)$$
$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 4y = 4\cos(2x)$$

C. 
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 4\cos(2x)$$

$$\mathbf{D.} \quad \frac{d^2 y}{dx^2} - 2\frac{dy}{dx} - 4y = 4\cos(2x)$$

$$\mathbf{E.} \quad \frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 4y = 4\cos(2x)$$

#### **Question 29**

r

A jug of water at a temperature of 20°C is placed in a refrigerator. The temperature inside the refrigerator is maintained at 4°C.

When the jug has been in the refrigerator for t minutes, the temperature of the water in the jug is  $y^{\circ}C$ . The rate at which the water's temperature decreases is proportional to the excess of its temperature over the temperature inside the refrigerator.

If k is a positive constant, a differential equation involving y and t is

A. 
$$\frac{dy}{dt} = -k(y-20); \quad t = 0, \ y = 4$$
  
B.  $\frac{dy}{dt} = -k(y+4); \quad t = 0, \ y = 20$   
C.  $\frac{dy}{dt} = -k(y-4); \quad t = 0, \ y = 16$   
D.  $\frac{dy}{dt} = -k(y+4); \quad t = 0, \ y = 24$ 

**E.** 
$$\frac{dy}{dt} = -k(y-4); \quad t = 0, \ y = 20$$

#### **Question 30**

A particle moves in a straight line. When its displacement from a fixed origin is x m, its velocity is v m/s and its acceleration is a m/s<sup>2</sup>.

Given that a = 16x, and that v = -5 when x = 0, the relation between v and x is

**A.** 
$$v = -4x - 5$$

- **B.**  $v = 8x^2 5$
- C.  $v = -\sqrt{25 + 16x^2}$
- **D.**  $v = \sqrt{25 + 16x^2}$
- **E.**  $v = -\sqrt{25 + 32x^2}$

END OF PART I MULTIPLE-CHOICE QUESTION BOOK

18





Victorian Certificate of Education 2004

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

Letter

#### STUDENT NUMBER

Figures

Words

# SPECIALIST MATHEMATICS

# Written examination 1 (Facts, skills and applications)

Monday 1 November 2004

Reading time: 11.45 am to 12.00 noon (15 minutes) Writing time: 12.00 noon to 1.30 pm (1 hour 30 minutes)

# PART II QUESTION AND ANSWER BOOK

This examination has two parts: Part I (multiple-choice questions) and Part II (short-answer questions). Part I consists of a separate question book and must be answered on the answer sheet provided for multiple-choice questions.

Part II consists of this question and answer book.

You must complete **both** parts in the time allotted. When you have completed one part continue immediately to the other part.

#### Structure of book

| Number of | Number of questions | Number of |
|-----------|---------------------|-----------|
| questions | to be answered      | marks     |
| 5         | 5                   | 20        |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, up to four pages (two A4 sheets) of pre-written notes (typed or handwritten) and an approved scientific and/or graphics calculator (memory may be retained).
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

#### Materials supplied

• Question and answer book of 6 pages.

#### Instructions

- Detach the formula sheet from the centre of the Part I book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

#### At the end of the examination

• Place the answer sheet for multiple-choice questions (Part I) inside the front cover of this question and answer book (Part II).

Students are NOT permitted to bring mobile phones and/or any other electronic communication devices into the examination room.

This page is blank

#### **Instructions for Part II**

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer is required to a question.

In questions where more than one mark is available, appropriate working must be shown.

Where an instruction to **use calculus** is stated for a question, you must show an appropriate derivative or antiderivative.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the **acceleration due to gravity** to have magnitude  $g \text{ m/s}^2$ , where g = 9.8.

#### **Question 1**

**a.** Show that, for  $0 < x < \frac{1}{2}$ ,  $\frac{d}{dx} \left( \sin^{-1} \left( \sqrt{2x} \right) \right) = \frac{1}{\sqrt{2x(1-2x)}}$ .

2 marks

**b.** Hence find the exact value of  $\int_{\frac{1}{2}}^{\frac{1}{4}} \frac{1}{\sqrt{2x(1-2x)}} dx$ .

2 marks

A 20 kg crate is pulled across a rough horizontal floor by a force, of magnitude 100 newtons, applied upwards at an angle of 40° to the horizontal.

**a.** Complete the following diagram so that it shows **all** the forces acting on the crate.



1 mark

**b.** The coefficient of friction between the crate and the floor is 0.34. Find the acceleration of the crate, in m/s<sup>2</sup>, correct to two decimal places.

4 marks

#### **Question 3**

If  $f'(x) = 15x\sqrt{2-x}$  and f(2) = 0, then f(x) can be written in the form  $(ax+b)(2-x)^{\frac{3}{2}}$ . Find the values of *a* and *b*.

4 marks

PART II - continued

Points O(0, 0), A(6, 2) and B(4, -3) form the vertices of a triangle as shown in the diagram below.

The position vectors  $\overrightarrow{OA} = \underline{a} = 6\underline{i} + 2\underline{j}$  and  $\overrightarrow{OB} = \underline{b} = 4\underline{i} - 3\underline{j}$  are indicated. *AP* is an altitude of triangle *OAB*.



**a.** Find the scalar resolute of  $\underline{a}$  in the direction of  $\underline{b}$ .

**b.** Hence find the length of the altitude *AP*.

2 marks

2 marks

Let 
$$w = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$$
.

**a.** Express *w* in **exact** polar form.

1 mark

**b.** Hence find the least positive integer k for which  $w^k = 1$ .

2 marks

# **SPECIALIST MATHEMATICS**

Written examinations 1 and 2

FORMULA SHEET

**Directions to students** 

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2004

# **Specialist Mathematics Formulas**

## Mensuration

| area of a trapezium:               | $\frac{1}{2}(a+b)h$                                      |
|------------------------------------|----------------------------------------------------------|
| curved surface area of a cylinder: | $2\pi rh$                                                |
| volume of a cylinder:              | $\pi r^2 h$                                              |
| volume of a cone:                  | $\frac{1}{3}\pi r^2h$                                    |
| volume of a pyramid:               | $\frac{1}{3}Ah$                                          |
| volume of a sphere:                | $\frac{4}{3}\pi r^3$                                     |
| area of a triangle:                | $\frac{1}{2}bc\sin A$                                    |
| sine rule:                         | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ |
| cosine rule:                       | $c^2 = a^2 + b^2 - 2ab \cos C$                           |

# **Coordinate geometry**

 $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$  hyperbola:  $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ ellipse:

$$= \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =$$

# **Circular (trigometric) functions**

$$\cos^{2}(x) + \sin^{2}(x) = 1$$
  

$$1 + \tan^{2}(x) = \sec^{2}(x)$$
  

$$\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)$$
  

$$\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)$$
  

$$\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x) \tan(y)}$$
  

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x) = 2\cos^{2}(x) - 1 = 1 - 2\sin^{2}(x)$$

$$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$
$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$
$$\tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\sin(2x) = 2\,\sin(x)\,\cos(x)$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

 $\cot^2(x) + 1 = \csc^2(x)$ 

| function | Sin <sup>-1</sup>                           | $\cos^{-1}$     | Tan <sup>-1</sup>                           |
|----------|---------------------------------------------|-----------------|---------------------------------------------|
| domain   | [-1, 1]                                     | [-1, 1]         | R                                           |
| range    | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ | [0 <i>, π</i> ] | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ |

# Algebra (Complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$
  

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \operatorname{Arg} z \le \pi$$
  

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2) \qquad \frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$
  

$$z^n = r^n \operatorname{cis}(n\theta) \text{ (de Moivre's theorem)}$$

# Calculus

$$\begin{aligned} \frac{d}{dx}(x^n) &= nx^{n-1} & \int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1 \\ \frac{d}{dx}(e^{ax}) &= ae^{ax} & \int e^{ax} dx = \frac{1}{a}e^{ax} + c \\ \frac{d}{dx}(\log_e(x)) &= \frac{1}{x} & \int \frac{1}{x}dx = \log_e(x) + c, \text{ for } x > 0 \\ \frac{d}{dx}(\sin(ax)) &= a\cos(ax) & \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c \\ \frac{d}{dx}(\cos(ax)) &= -a\sin(ax) & \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c \\ \frac{d}{dx}(\tan(ax)) &= a\sec^2(ax) & \int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c \\ \frac{d}{dx}(\sin^{-1}(x)) &= \frac{1}{\sqrt{1-x^2}} & \int \frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0 \\ \frac{d}{dx}(\cos^{-1}(x)) &= \frac{-1}{\sqrt{1-x^2}} & \int \frac{-1}{\sqrt{a^2 - x^2}}dx = \cos^{-1}\left(\frac{x}{a}\right) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} & \int \frac{a^2}{a^2 + x^2}dx = \tan^{-1}\left(\frac{x}{a}\right) + c \end{aligned}$$

| product rule:                    | $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$                                                         |
|----------------------------------|--------------------------------------------------------------------------------------------------------------|
| quotient rule:                   | $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$                         |
| chain rule:                      | $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$                                                                 |
| mid-point rule:                  | $\int_{a}^{b} f(x) dx \approx (b-a) f\left(\frac{a+b}{2}\right)$                                             |
| trapezoidal rule:                | $\int_{a}^{b} f(x) dx \approx \frac{1}{2} (b-a) (f(a) + f(b))$                                               |
| Euler's method:                  | If $\frac{dy}{dx} = f(x)$ , $x_0 = a$ and $y_0 = b$ , then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$ |
| acceleration:                    | $a = \frac{d^2 x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$          |
| constant (uniform) acceleration: | $v = u + at$ $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$                          |

3

# Vectors in two and three dimensions

$$\begin{aligned} \mathbf{r} &= x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \\ |\mathbf{r}| &= \sqrt{x^2 + y^2 + z^2} = r \\ \dot{\mathbf{r}} &= \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k} \end{aligned}$$

## Mechanics

| momentum:           | $\underset{\sim}{\mathbf{p}} = m\underset{\sim}{\mathbf{v}}$ |
|---------------------|--------------------------------------------------------------|
| equation of motion: | $\underset{\sim}{\mathbf{R}} = m\underset{\sim}{\mathbf{a}}$ |
| friction:           | $F \leq \mu N$                                               |