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Question 1 

 

a. i.  
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ii. The roots of the equation Caaz ∈= ,3 , are evenly spaced around a circle. 

Since we know that one of the roots is u, the circle has a radius of 2 and the 
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iii. Method 1 
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Method 2 
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From part ii. we know that the second root; 
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, is a reflection of 
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 in the y- axis. Therefore the second root must be a reflection of 

i+3  in the y-axis. 

The second root is therefore i+− 3  and the third root is –2i. (1 mark) 
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b. i. Method 1 
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Method 2 
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(1 mark) 

ii. Ryxiyxz ∈+= ,,  

( ) ( ) ( ) ( )

0

04

1212

1313

33

22

2222

=

=−

++=+−

++−=−+−

+−+=−−+

−=−

y

y

yyyy

yxyx

iiyxiiyx

uzuz

 

required as    becomes  So xziyxz =+=   (1 mark) 

 

 iii. 

If uzuz −=−  then the distance from the  

complex number z to the complex number u is 

the same as the distance from z to the complex 

number u . 

From the diagram, those complex  

numbers z for which this applies, lie along  

the real axis of the Argand diagram. 

So 0 is, that , == yxz . 

(1 mark) 

Total 9 marks 
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Question 2 

 

a. Draw a diagram showing all the forces. 
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b. Since the acceleration is constant, we can use the formula 
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c. Draw a diagram showing all the forces. 

 

 

 

 

 

 

 

 

 

 

 

 

There is now no pulling force up the ramp and so the tendency of the box would be to 

slip down the ramp and so the friction forces are directed up the ramp. 
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So the box is not on the point of slipping down the ramp. 
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The box travels 33cm (to the nearest centimetre) in the first second. 

(1 mark) 

Total 12 marks 

°30

~
i

~

j

 

(1 mark) 

(1 mark) 

(1 mark) 

(1 mark) 



6 

 

© THE HEFFERNAN GROUP 2005                          Specialist Maths Trial Exam 2 solutions 

Question 3  
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b. Since the function ( )tT  contains the principal valued sin function, then 
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(1 mark) – upper limit 

(1 mark) – lower limit 

 

 

 

 

 

(1 mark) 
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c. 
2400 T

dt

dT
−=  

The sign of 
dt

dT
 can only be positive. Hence the gradient of the function ( )tT  is 

always positive and hence the temperature increases as time increases and hence the 

maximum temperature occurs at the upper limit of the domain of the function )(tT ; 

that is, at 
6

π
=t . 

(1 mark) – stating 
dt

dT
 is always positive 

(1 mark) – rest of explanation 
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8 

 

© THE HEFFERNAN GROUP 2005                          Specialist Maths Trial Exam 2 solutions 

Question 4 

 

a. We require that 01 >+ xe  
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b. and c. 

The y-intercept occurs when 0=x  
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There is an asymptote of  1=y since as +→→−∞→ 1)( so and 0, xfex x . 

(1 mark) correct shape of ( )xfy =  

(1 mark) – correct y-intercept 

(1 mark) - showing correct asymptote on graph 

(1 mark) - showing graph of ( )xfy 1−=  as a reflection 

of whatever has been drawn for graph of ( )xfy = . 

1=x

1=y

)(xfy =
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d. Stationary points occur when ( ) 0' =xf . 
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Since Rxe x ∈> for  0 , there is no solution to 
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stationary point on the graph of ( )xfy = . 
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ii. 

x

xx

x

xx

e

ee

e

ee

−

+

+

2

21
 

x

x
x

x

x

e

e
e

e

e

+
−=

+ 11
      So

2

 

( )

x

x

x

xxx

x

xxx

x

x
x

e

e

e

eee

e

eee

e

e
e

+
=

+

−+
=

+

−+
=

+
−

1

1

1

1

1
 :Check

2

2
 

So xx ebea −==   and  . 
(1 mark) 

 

 

f. ∫=
1

0

2volume dxyπ  

( )

( )

[ ] ( )[ ]
( ) ( ){ } ( ) ( ){ }

( ) ( ){ }

( ) 
















+
+−=

++−−+=

−+−+−+=

−+=

−+=

+
−+=









++

+
−=









++

+
=

+

+
−∫∫

∫ ∫

∫

∫

e
e

ee

eee

uxe

dx
dx

du
udxe

dx
e

e
dx

dxe
e

e
e

dxe
e

e

e

ee

ee

e

e
x

e

x

x

x
x

x

x

x
x

x

x

x

1

2
log34

2log1log414

2log1log0414

log4

14

1
14e

ii. e.part  from  13
1

13
1

1

2

1

0

1

2

1

1

0

1

0

1

0

1

0

1

0

2

π

π

ππ

ππ

ππ

ππ

π

π

�

 

 

 

 

 

Total 16 marks 

 

 

(1 mark) 

(1 mark) 

2,0

1,1

1 where

==

+==

=

+=

ux

eux

e
dx

du

eu

x

x

 

(1 mark) change 

of terminals 

(1 mark) 

 

(1 mark) 

From part e.i. 
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Question 5 

 

a. The feather is released at 0=t . The vertical component above the ground is given by 
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The feather is dropped from a height of 3m (to the nearest metre). 

(1 mark) 

 

 

b. The feather reaches the ground when the component of the 
~
k  coordinate equals zero. 
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It takes 19 seconds. 
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c. We need to find ( )10
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(1 mark) 

The feather is 1.13m (correct to 2 decimal places) from the sister at secs 10=t . 

(1 mark) 

 

 

d. The feather is directly north-east when the component in the 
~
i  direction and the 

component in the 
~
j  direction are equal; that is when 
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Using a graphics calculator we see that this happens when ...70715 ⋅=t . 

So, the feather is directly north-east at secs 715 ⋅=t  (correct to 1 decimal place). 

(1 mark) 

(1 mark) 
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f. At secs 9=t , 
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g. We need to find the angle between 
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The feather reaches the ground at seconds 19=t . 
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h. The component of 
~
r in the 

~
i  direction gives the position of the feather in the east 

direction, that is, 
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sin
t

. 

The maximum value for 







10

sin
t

 is 1.         (1 mark) 

Check when this occurs to make sure that it is before the feather hits the ground. 

Now, 1
10

sin =






 t
 when 

210

π
=

t
; that is when π5=t which is at approximately 

7.15=t seconds.  This is before the feather hits the ground. 

So the furthest distance east reached by the feather is 1 m. 

 

(1 mark) 

e. Total 15 marks 


