Year 2005

VCE

Specialist Mathematics Trial Examination 2

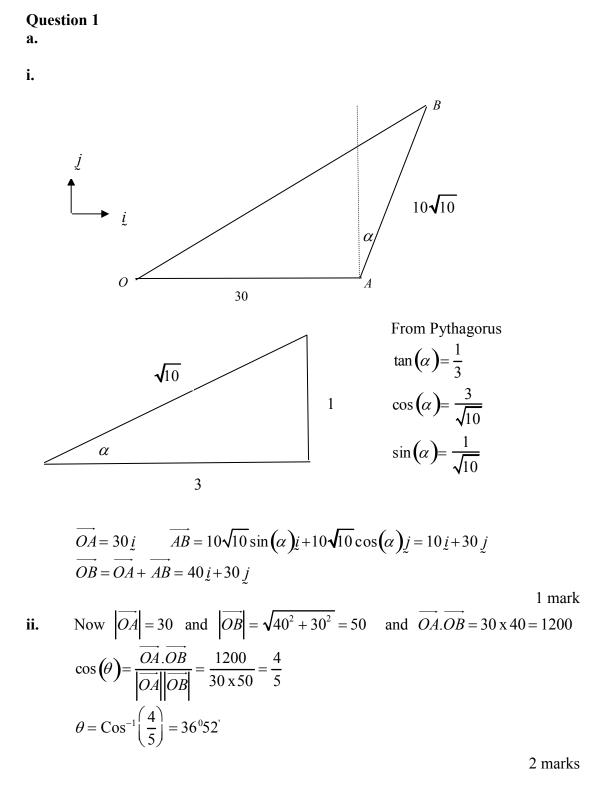
Suggested Solutions

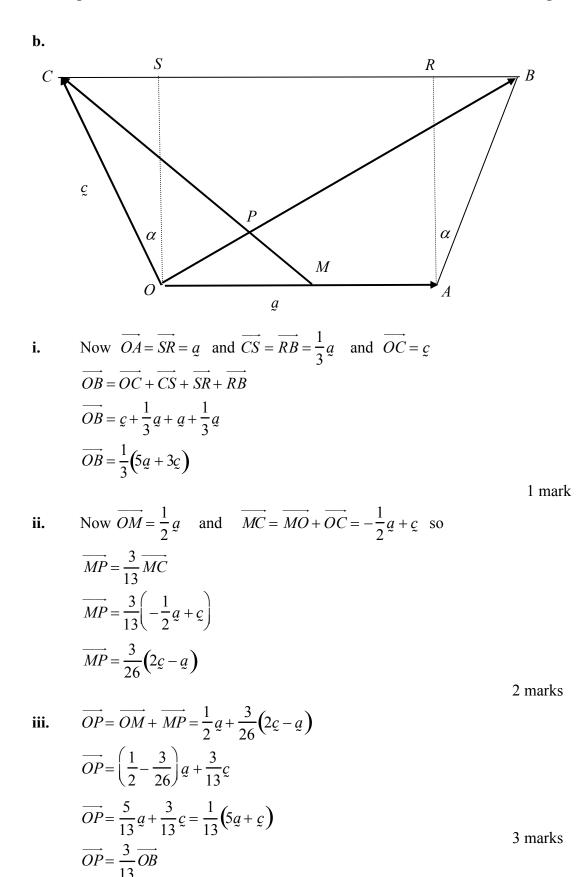
© Kilbaha Multimedia Publishing 2005

Kilbaha Multimedia Publishing ABN 47 065 111 373 PO Box 2227 Kew Vic 3101 Australia Tel: 03 9817 5374 Fax: 03 9817 4334 chemas@chemas.com www.chemas.com

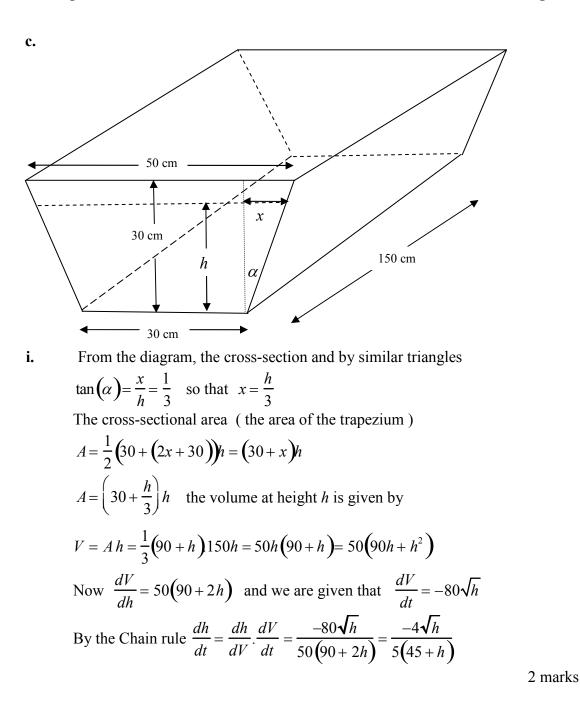
IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Multimedia Publishing.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from Copyright Agency Limited. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.
- Teachers and students are reminded that for the purposes of school requirements and external assessments, students must submit work that is clearly their own.
- Schools which purchase a licence to use this material may distribute this electronic file to the students at the school for their exclusive use. This distribution can be done either on an Intranet Server or on media for the use on stand-alone computers.
- Schools which purchase a licence to use this material may distribute this printed file to the students at the school for their exclusive use.
- The Word file (if supplied) is for use ONLY within the school
- It may be modified to suit the school syllabus and for teaching purposes.
- All modified versions of the file must carry this copyright notice
- Commercial use of this material is expressly prohibited





Hence the points O, P, B are collinear and $OP: OB = \frac{3}{13}$



Page 3

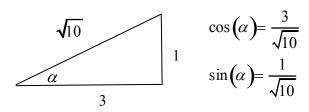
2005 Specialist Mathematics Trial Examination 2 Solutions

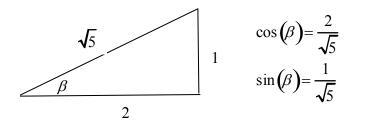
ii. Inverting gives
$$\frac{dt}{dh} = \frac{5(45+h)}{-4\sqrt{h}} = -\frac{5}{4} \left(45h^{-\frac{1}{2}} + h^{\frac{1}{2}} \right)$$
 integrating wrt h
 $t = -\frac{5}{4} \int_{0}^{25} \left(45h^{-\frac{1}{2}} + h^{\frac{1}{2}} \right) dh$
 $t = -\frac{5}{4} \left[90h^{\frac{1}{2}} + \frac{2}{3}h^{\frac{3}{2}} \right]_{0}^{25} = -\frac{5}{4} \left[90\sqrt{25} + \frac{2}{3}(25)^{\frac{3}{2}} - 0 \right]$
 $t = 666\frac{2}{3}$ minutes
 $t = 11\frac{1}{9}$ hours

Question 2

Let
$$\alpha = \operatorname{Tan}^{-1}\left(\frac{1}{3}\right)$$
 $\beta = \operatorname{Tan}^{-1}\left(\frac{1}{2}\right)$ $u = 3+i$ and $v = 2+i$

From Pythagorus Theorem





a.
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

 $\cos(\alpha + \beta) = \frac{3}{\sqrt{10}} \cdot \frac{2}{\sqrt{5}} - \frac{1}{\sqrt{10}} \cdot \frac{1}{\sqrt{5}} = \frac{6-1}{\sqrt{50}} = \frac{5}{\sqrt{25.2}} = \frac{\sqrt{2}}{2}$

2 marks

b.
$$v = 2 + i$$

 $v^2 = (2 + i)^2 = 4 + 4i + i^2 = 3 + 4i$
 $\operatorname{Im}(v^2) = 4 |v^2| = \sqrt{9 + 16} = \sqrt{25} = 5$
 $\sin(2\beta) = \frac{\operatorname{Im}(v^2)}{|v^2|} = \frac{4}{5}$
 $\sin(2\beta) = 2\sin(\beta)\cos(\beta) = 2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}} = \frac{4}{5}$

2 marks

$$uv = (3+i)(2+i) = 6+2i+3i+i^2 = 5+5i$$

Arg $(uv) = Tan^{-1}\left(\frac{5}{5}\right) = Tan^{-1}(1) = \frac{\pi}{4}$ and
Arg $(uv) = Arg(u) + Arg(v) = \alpha + \beta$ so $\alpha + \beta = \frac{\pi}{4}$

2005 Specialist Mathematics Trial Examination 2 Solutions

Page 6

d.
$$u = 3+i$$
 and $\overline{u} = 3-i$ $u + \overline{u} = 6$ $u \overline{u} = 9-i^2 = 10$
Since *a* and *b* are real numbers by the conjugate root theorem
 $z^2 - 6z + 10$ is a factor
 $z^3 + a z^2 + b z + 20 = 0$
 $(z^2 - 6z + 10)(z + 2)$

expanding gives coefficient of z^2 : a = 2 - 6 = -4 z: b = 10 - 12 = -2a = -4 b = -2 the roots are $z = 3 \pm i$ and z = -2

2 marks

$$Q(z) = z^{3} - (2+i)z^{2} + 5z - 10 - 5i = 0$$

$$Q(2+i) = (2+i)^{3} - (2+i)(2+i)^{2} + 5(2+i) - 10 - 5i$$

$$Q(2+i) = (2+i)^{3} - (2+i)^{3} + 10 + 5i - 10 - 5i = 0 \text{ shown}$$

So $z = 2+i$ is a root $(z-2-i)$ is a factor

$$Q(z) = z^{3} - (2+i)z^{2} + 5z - 10 - 5i = 0$$

$$Q(z) = (z-2-i)(z^{2} + 5) = (z-2-i)(z + \sqrt{5}i)(z - \sqrt{5}i) = 0$$

the roots are $z = 2+i$ and $z = \pm \sqrt{5}i$

Question 3

a.
$$u = 10$$
, $v = 5$ and $a = -2.5$ $t = ?$ $s = ?$

using constant acceleration formulae

$$s = \left(\frac{u+v}{2}\right)t$$

$$s = \left(\frac{5+10}{2}\right)2$$

$$v = u + at$$

$$5 = 10 - 2.5t$$

$$2.5t = 5$$

$$t = 2 \not\exists ec$$

s = 15 metres

2 marks

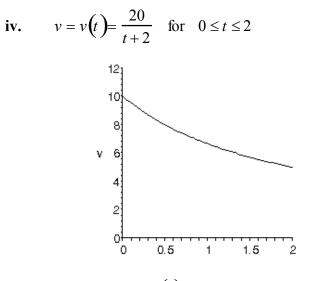
1 mark

b.i. from Newton's Law
$$800\ddot{x} = -40v^2$$

 $\ddot{x} = v\frac{dv}{dx} = -\frac{v^2}{20}$
 $\frac{dv}{dx} = -\frac{v}{20}$
ii. $\int \frac{dv}{v} = -\frac{1}{20}\int dx$
 $\log_e(v) = -\frac{x}{20} + C_1$
to find C_1 use $v = 10$ when $x = 0$
 $C_1 = \log_e(10)$
 $\log_e(v) = -\frac{x}{20} + \log_e(10)$
 $\log_e(v) - \log_e(10) = -\frac{x}{20}$
 $\log_e(\frac{v}{10}) = -\frac{x}{20}$
 $x = -20\log_e(\frac{v}{10})$ Now when $v = 5$
 $x = -20\log_e(\frac{5}{10}) = 20\log_e(2)$

iii. $\ddot{x} = \frac{dv}{dt} = -\frac{v^2}{20}$ $\int \frac{dv}{v^2} = -\frac{1}{20} \int dt = \frac{-t}{20} + C_2$ $-\frac{1}{v} = \frac{-t}{20} + C_2$ to find C_2 use v = 10 when t = 0 $C_2 = -\frac{1}{10}$ $-\frac{1}{v} = -\frac{t}{20} - \frac{1}{10} = \frac{-(t+2)}{20}$ Now when v = 5 $5 = \frac{20}{t+2}$ $t + 2 = \frac{20}{5} = 4$ $t = 2 \sec$

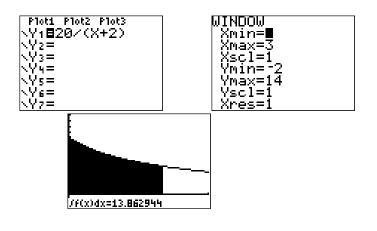
3 marks



As a check $x = 20\log_e(2) \approx 13.863$

2 marks

© Kilbaha Multimedia Publishing 2005



Question 4

a.
$$r(t) = 2\cot(t)i + (1 - \cos(2t))j$$
 for $t \ge 0$
 $x(t) = 2\cot(t)$ to eliminate t
 $y(t) = 1 - \cos(2t) = 1 - (1 - 2\sin^2(t)) = 2\sin^2(t)$
 $x^2 + 4 = 4\cot^2(t) + 4 = 4\csc^2(t) = \frac{4}{\sin^2(t)} = \frac{4}{\frac{1}{2}y}$
so $y = \frac{8}{x^2 + 4}$

2 marks

b i.
$$f(x) = \frac{8}{x^2 + 4} = 8(x^2 + 4)^{-1}$$
 for stationary points
 $f'(x) = -\frac{16x}{(x^2 + 4)^2} = 0$ when $x = 0$ so $f'(0) = 0$ $f(0) = 2$
 $f''(x) = -\frac{16(x^2 + 4)^2 - 4x(x^2 + 4)6x}{(x^2 + 4)^4} = \frac{16(3x^2 - 4)}{(x^2 + 4)^3} = 0$ $f''(0) = -1 < 0$
When $3x^2 - 4 = 0$ $x = \pm \frac{2}{\sqrt{3}} = \pm \frac{2\sqrt{3}}{3}$ $f\left(\frac{2\sqrt{3}}{3}\right) = \frac{3}{2}$ $f\left(-\frac{2\sqrt{3}}{3}\right) = \frac{3}{2}$
 $(0,2)$ is a maximum $\left(\frac{2\sqrt{3}}{3}, \frac{3}{2}\right)$ and $\left(-\frac{2\sqrt{3}}{3}, \frac{3}{2}\right)$ are inflexion points

4 marks

ii.

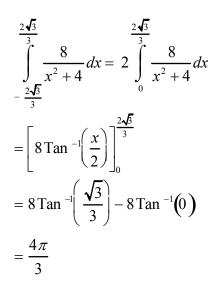


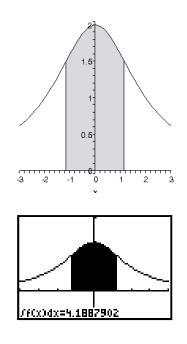
1 mark

2005 Specialist Mathematics Trial Examination 2 Solutions

Page 11

iii. The area of the door way is

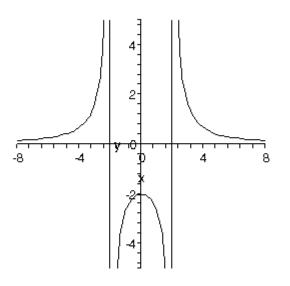




As a check on the TI-83

3 marks

c. i. the domain is $R \setminus \{-2,2\}$ and the graph has a maximum turning point at (0,-2) range is $(-\infty,-2] \cup (0,\infty)$ the graph has vertical asymptotes at $x = \pm 2$ and a horizontal asymptote at y = 0 (the *x*-axis)



ii. The volume formed is given by $V = \int_{6}^{8} \left[g(x) \right]^{2} dx$

by partial fractions

$$g(x) = \frac{8}{x^2 - 4} = \frac{A}{x + 2} + \frac{B}{x - 2} = \frac{A(x - 2) + B(x + 2)}{x^2 - 4} = \frac{x(A + B) + 2(B - A)}{x^2 - 4}$$

A + B = 0 and B - A = 4 so that A = -2 and B = 2

$$g(x) = \frac{8}{x^2 - 4} = \frac{2}{x - 2} - \frac{2}{x + 2}$$

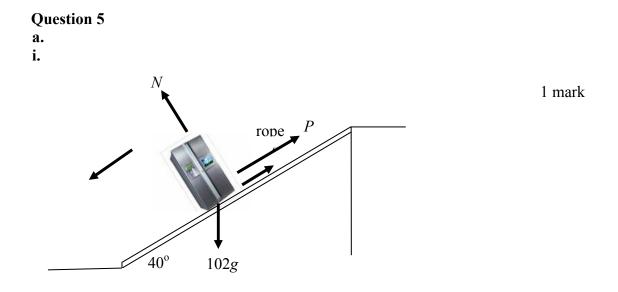
$$V = \pi \int_{-6}^{8} \left(\frac{4}{(x - 2)^2} - \frac{8}{(x - 2)(x + 2)} + \frac{4}{(x + 2)^2}\right) dx$$

$$V = \pi \int_{-6}^{8} \left(\frac{4}{(x - 2)^2} - \frac{2}{x - 2} + \frac{2}{x + 2} + \frac{4}{(x + 2)^2}\right) dx$$

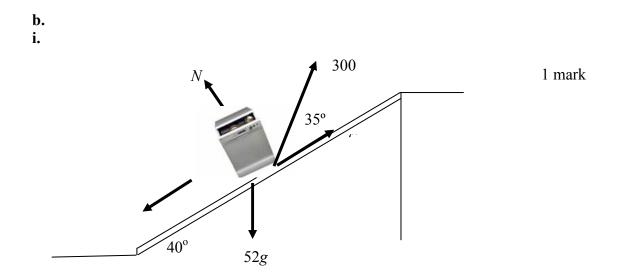
$$V = \pi \left[\frac{-4}{x - 2} + 2\log_e\left(\frac{x + 2}{x - 2}\right) - \frac{4}{x + 2}\right]_{-6}^{8}$$

$$V = \pi \left[-\frac{4}{6} + 2\log_e\left(\frac{10}{6}\right) - \frac{4}{10} + \frac{4}{4} - 2\log_e\left(\frac{8}{4}\right) + \frac{4}{8}\right]$$

$$V = \pi \left(\frac{13}{30} + 2\log_e\left(\frac{5}{6}\right)\right)$$



ii. Given that $\mu = 0.25$ find P The frictional force is up, since the motion is down Resolving the forces, using Newtons 2nd law of motion perpendicular to the plane (1) $N - 102g\cos(40^\circ) = 0$ parallel to the plane (2) $102g\sin(40^\circ) - \mu N - P = 0$ from (1) $N = 102g\cos(40^\circ)$ from (2) $P = 102g\sin(40^\circ) - \mu N = 102g\sin(40^\circ) - 0.25 \times 102g\cos(40^\circ)$ $P = 102g(\sin(40^\circ) - 0.25\cos(40^\circ)) = 451.10$ newtons 3 marks



ii. The frictional force is up, since the motion is down Resolving the forces, using Newtons 2nd law of motion Perpendicular to the plane (1) $N + 300\sin(35^\circ) - 52g\cos(40^\circ) = 0$ parallel to the plane (2) $52g\sin(40^\circ) - \mu N - 300\cos(35^\circ) = 52x0.5$ from (1) $N = 52g\cos(40^\circ) - 300\sin(35^\circ) = 218.303$ from (2) $\mu N = 52g\sin(40^\circ) - 300\cos(35^\circ) - 52x0.5 = 55.819$ so that $\mu = \frac{55.819}{218.303} = 0.256$

End of 2005 Specialist Mathematics Trial Examination 2 S	olutions
--	----------

KILBAHA MULTIMEDIA PUBLISHING	TEL: (03) 9817 5374
PO BOX 2227	FAX: (03) 9817 4334
KEW VIC 3101	chemas@chemas.com
AUSTRALIA	www.chemas.com