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Specialist Mathematics Examination 2 Solutions 2006 
SECTION 1 
 

Question 1    Answer C 

The hyperbola  ( ) ( )2 22 1
1

9 4
x y− −

− =   has asymptotes when the right hand side is zero,   

( ) ( )2 22 1
0

9 4
x y− −

− =    taking the square root of both sides ( ) ( )2 1
3 2

x y− −
= ±  

( ) ( )2 2 3 1x y− = ± −    

2 4 3 3x y− = −  2 4 3 3x y− = − +  

2 3 1x y− =  and 2 3 7x y+ =    as the equation of the asymptotes. 

 

Question 2    Answer E 

The function  ( ) ( )( )
1

4 2
f x

x x
=

− +
  has vertical asymptotes when the denominator is zero,  

that is when  ( )( )4 2 0 at 4 and 2x x x x− + = = = −  

now  ( )( ) 24 2 2 8x x x x− + = − −   so   ( )' 0 when 2 2 0 at 1f x x x= − = =  

and  ( ) 1 11
3 3 9

f = = −
− ×

 , there is a turning point at  11,
9

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 

Question 3    Answer D 

( ) ( ) ( )1 1r t t i t j= + + −   is the position vector, the parametric equations are 

( )1 1x t= +  ( )2 1y t= −   adding    ( ) ( )1 2+   gives    2 so 2x y y x+ = = − +  

 

Question 4    Answer C 

Let  where , and 0z a bi a b R a b= + ∈ > >  

now  ( ) ( )3i a bi i a bi− + = +   is a rotation of  by 270z °   anticlockwise from  z,  

or a rotation  90°   clockwise from  z. 
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Question 5    Answer B 

( ) ( )5 cis cis 2z a a a kπ π π= − = = +  

1
5

2cis
5 5

kz a π π⎛ ⎞= +⎜ ⎟
⎝ ⎠

   when  0k =   one solution is  
1
5

5
z a cis π⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

when   2k =   another one of the five solutions is  ( )1 1
5 5z a cis aπ= = −  

 

Question 6    Answer B 

The required region is the inside of a circle with centre  2 and radius 1c a i r= + =  

( )so 2 1z c r z a i− ≤ − + ≤  

 

Question 7    Answer E 

Checking each alternative 

A. If  , , 0 so 2 0z x iy z x iy z z x= + = − + = =  

B. If  ( ) ( )Re , lmz x iy z x z y= + = =        ( ) ( )3Re lm 3z z x y= ⇒ =  

C. ( ) 2,z iz x iy i x iy ix i y ix y= + = − = − = +  

D. 2 0x y− =  

 all of A.B.C. and D. pass through the origin, 0 0x y= =  

E. 1x y+ =   does not pass through the origin. 

 

Question 8    Answer A 

Given  3 22 7x y− =   using implicit differentiation     ( ) ( ) ( )3 22 7d d dx y
dx dx dx

− =  

2 2
2 6 36 2 0 so

2
dy dy x xx y
dx dx y y

− = = =     now at the point where  33 , 2 9 7y x= − − =  

( )3 32 16 , 8 , 2 the point is 2, 3x x x= = = −          
( )2, 3

3 4 4
3

dy
dx −

×
= = −

−
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Question 9    Answer C 

( )52 21 let 1 2
b

a

dux x dx u x x
dx

+ = + =⌠⎮
⌡

      

change terminals when  2 1x b u b= = +   and when  2 1x a u a= = +  

( )
2

2

152 5

1

11
2

b b

a a
x x dx u du

+

+
+ =∫ ∫  

 

Question 10    Answer B 

x kg has dissolved,  ( )5 88 kg is undissolved, 8 for 0 8
100 20

dx xx x x
dt

−
− = − = < <  

 

Question 11    Answer C 

At  0x =   the gradient of the curves is zero, at the point  1 1,
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

  the gradient is negative, 

and less than one, option  C.  is the only one which satisfies this. 

 

Question 12    Answer D 

The velocity  ( ) ( )sin 2 then 2cos 2dvv x x
dx

= =     then acceleration 

( ) ( ) ( )2sin 2 cos 2 sin 4dva v x x x
dx

= = =  

 

Question 13    Answer E 

( ) ( )2 10 3r t t i j= − +   ( ) ( )2 1 for 0s t i t j t= + − ≥  

checking each alternative 

( )1 8 3r i j= − +   ( )1 2s i=  

( )4 2 3r i j= − +   ( )4 2 3s i j= +  

( )5 3r j=   ( )5 2 4s i j= −  

( )6 2 3r i j= +    ( )6 2 5s i j= +  

so  R  and  S  are never in the same position. 
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Question 14    Answer B 

( ) ( )3 6 5r t t i t j k= − − +   differentiating the position vector with respect to t gives the  

velocity vector   ( ) 3r t i j
t

= − −   at  9t =  ( )9r i j= − −  , this is the direction of motion of  

the particle when  9t =  

 

Question 15    Answer D 

In the parallelogram  0a b c d+ + + =  

and and so 0b d a c a c= − = − + =  

 

Question 16    Answer D 

Let  ( )15 2 and 2 4 3
29

a i j k b i j k= + − = − +  

4+16+9. 10 4 6 0 and 1
29

a b b= − − = = =  

Option  D.  is correct, the vectors in A. B. and C. are not unit vectors and the vector in  E.   

is not perpendicular to  a  

 

Question 17    Answer B 

If 2 2u i j v i j k= + = + +           2 1 4 4 3 . 1 2 3u v u v= = + + = = + =   

( ) . 3 1cos so 45
3 2 2

u v
u v

θ θ= = = = °  

 

Question 18    Answer A 

                           R   resolving perpendicular to the plane  ( )cos 0R mg θ− =  

     so  ( )cos now 20 kg , 60R mg mθ θ= = = °  

         mg  ( )20 cos 60 10R g g= ° =  

   θ     
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Question 19    Answer A 

A. ( )12cos 30 10a° =  21.04m/sa =  

B. ( )10cos 10 10a° =  20.98m/sa =  

C. 10 10a=    21.0m/sa =  

D. ( )10cos 20 10a° =  20.94m/sa =  

E. ( )12cos 45 10a° =  20.85m/sa =  

the largest is  A. 

 

Question 20    Answer D 

By Lami’s Theorem 

( ) ( ) ( )
3 2 1

cos 150 cos 150 cos 60
F F F

= =
° ° °

 

( )
( )

1
1 1

3 2 1

1
cos 150 32

cos 60 33 3
2

FF FF F F
°

= = = = =
°

 

Question 21    Answer A 

resolving perpendicular to the plane   ( )8 cos 30 0N g− ° = ⇒  ( )8 cos 30 4 3N g g= ° =  

resolving parallel to the plane             ( )8 sin 30 0F g− ° = ⇒  ( )8 sin 30 4F g g= ° =  

for equilibrium to be maintained   F Nμ≤  

 4 4 3g gμ≤  

 1
3

μ ≥  

 

Question 22   Answer E 

resolving around the 2 kg block, moving upward   ( )1 2 2T g a− =  

resolving around the  5kg  block, moving downwards ( )2 5 5g T a− =   adding ( ) ( )1 2+   

gives  33 7 so
7
gg a a= =  
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SECTION 2 

 

Question 1 

a. 
5 2

3
0

36
1

xV dx
x

π=
+

⌠
⎮
⌡

 

b. let  3 21 3duu x x
dx

= + =    when 5 126 and if 0 1x u x u= = = =  

 
126

1

112 .V du
u

π= ⌠⎮
⌡

   

 

c. ( ) ( ) ( )126

1
12 log 12 log 126 log 1e e eV uπ π= = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 ( )12 log 126 182.32eV π= =  

 3182cmV =  

d. given 
( )

3
2

3

3

6 32cm/sec and
1

dx dy x
dt dt x

−
= =

+
 

 then 
( )
( )

3
2

3

3

2 6 3

1

xdy dy dx
dt dx dt x

−
= ⋅ =

+
 

e. 2

3

12then 2
1

dA xA y y
dy x

ππ π= = =
+

 

 
( )

( )

3

23

24 6 3

1

x xdA dA dy
dt dy dt x

π −
= ⋅ =

+
  so   24 , 1 , 2a b cπ= = =  

 

f. A  is a maximum when  0 or when 0dA dy
dx dx

= =  

 so 33 3 36 3 0 when 3 6 2 so 2x x x x− = = = =  

 



Specialist Mathematics  Exam  2   2006  Solutions                                                                           Page 

© KILBAHA PTY LTD 2006 
 

8
 

Question 2 
 

 4 2 5 5 4 2 5a OA i j b OB i j c OC i j d OD i j= = − − = = − = = − = = +  

a. 6AC c a i= − =  10BD a b j= − =  

 . 0 so is perpendicular  to  AC BD AC BD=  
 

b. 3 9DA a d i j= − = − −  9 81 90DA = + =  

 3 9DC c d i j= − = −  9 81 90DC = + =   

 ( ) . 9 81 4cos
90 5

DA DCADC
DA DC

− +
∠ = = =  

 

c. 3BA a b i j= − = − +   9 1 10BA = + =  

 3BC c b i j= − = +   9 1 10BC = + =  

 ( ) . 9 1 4cos
10 5

BA BCABC
BA BC

− +
∠ = = = −  

 so 1 14 4cos cos
5 5

ADC ABC − −⎛ ⎞ ⎛ ⎞∠ + ∠ = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 14 4cos 180 cos
5 5

− −⎛ ⎞⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
180= °  

 so the angles  ADC  and  ABC  add to 180°, they are supplementary angles. 

 

d. 2p OP i= =  

 3 4PA a p i j= − = − −  9 16 5PA = + =  

 3 4PC c p i j= − = −  9 16 5PC = + =  

 ( ) . 9 16 7cos
25 25

PA PCAPC
PA PC

− +
∠ = = =  

let  andAPC ADCα β= ∠ = ∠   to show  

( ) ( )cos cos 2α β=                                                                                                                                               

( ) ( ) ( ) ( )2 27cos cos 2 cos sin
25

α β β β= = −
16 9 7
25 25 25

= − =   shown                                                            

 

β  
   4 

5 
3 
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Question 3 
 

a. i. 105,600 , 48,000kgF N m= =   using  F ma=  

  2105,600 2.2ms
48,000

Fa
m

−= = =  

 ii. 2 10 , 2.2 ms , 70ms ?u a v t− −= = = =   using v u at= +  

  70 0 2.2t= +  

  70 31.8s
2.2

t = =  

iii. using 2 2 2v u as= +      

  270 0 2 2.2 5× ×= +  

  
270 1113.64m 1114m

2 2.2
s

×
= = =  

 

b. i. 
                                L 

                                                                  T 

 

 
                  R                         W 

 

 ii. resolving ( ) ( )1 sin 10 0T R W− − ° =  

               ( ) ( )2 cos 10 0L W− ° =  

 iii. ( )cos 10L W= ° ( )48,000 9.8 cos 10 463253.57× ×= ° = 463,254N=   

c. i. ( )248,000 5 500 80 80,000a v v= − − − −   all three forces oppose the motion of the plane. 

 ii. 248,000 5 40,000 500 80,000a v v= − − + −  

    25 500 120,000v v= − + −                          

  
25 500 120,000

48,000
dv v va v
dx

− + −
= =   

  
10

2
80

48,000
5 500 120,000

v dvx
v v

=
− + −

⌠
⎮
⌡

 

 iii. 1385 m 

 

010  



Specialist Mathematics  Exam  2   2006  Solutions                                                                           Page 

© KILBAHA PTY LTD 2006 
 

10
 

Question 4 

a. 1dy y
dt

= −  inverting 1
1

dt
dy y

=
−

   integrating with respect to y 

 ( )1 log 1
1 et dy y c

y
= = − − +

−
⌠
⎮
⌡

   log 1e y c t⇒ − = −    where c is the constant of integration 

b. ( ) ( ) ( )( ) ( ) ( )1 1r t i y t j x t i y t j
y t

= + − = +   so ( )1 now 1

dy
dx dy dy dt dt y ydxdt y dx dt dx

dt

= = ⋅ = = −  

c. i. Given  ( )1dy y y
dx

= −   using implicit differentiation 

  ( ) ( )
2

2
2 1d dy d y d d dyy y y y

dx dx dx dx dy dx
⎛ ⎞ ⎡ ⎤= = − = −⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

( ) ( ) ( )1 2 1 2 1dyy y y y
dx

= − = − −  

 ii. For  
2

2

10 1 if 0 then
2

d yy y
dx

< < = =   for an inflexion point. 

  if  1 then 0
2

dyy
dx

< >   and if 1 1then 0 so 0,
2 2

dyy
dx

⎛ ⎞> > ⎜ ⎟
⎝ ⎠

is an inflexion point 

d. 

x

y

-1 0 1 2 3 40

0.5

1

1.5

2

2.5

 
                     

e. ( )1dy y y
dx

= −  ( )0 2y =  1
4

h =  

 ( ) ( )( )1 0 0 0
1 3, 2 2 1 2
4 2

y y hf x y= + = + − =  

 ( )2 1 1 1
3 1 3 3 21, 1
2 4 2 2 16

y y hf x y ⎛ ⎞⎛ ⎞= + = + − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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Question 5 

a. i. 

 

 

 

 

 

 

 

 

 

 ii. { }1 1:z z z z z− = +  

b. Using  ( ) ( )2cos 2 2cos 1 let
8

A A A π
= − =  

  22cos 2cos 1
4 2 8
π π⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

  2 2 2 22cos 1
8 2 2
π +⎛ ⎞ = + =⎜ ⎟

⎝ ⎠
 

  2 2 2cos
8 4
π +⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

  2 2cos
8 2
π +⎛ ⎞ = ±⎜ ⎟

⎝ ⎠
  but  cos 0

8
π⎛ ⎞ >⎜ ⎟

⎝ ⎠
  so we need to take the positive 

  2 2cos
8 2
π +⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

c. 2 2sin cos 1
8 8
π π⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
( )2 2

4 2 22 2sin 1 cos 1
8 8 4 4
π π − ++⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
2 2 and sin 0

4 8
π− ⎛ ⎞= >⎜ ⎟

⎝ ⎠
  

 2 2sin
8 4
π −⎛ ⎞ =⎜ ⎟

⎝ ⎠
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d. 

7

2 2 2 2
2 2

i
⎛ ⎞+ −⎜ ⎟+
⎜ ⎟
⎝ ⎠

7
7cos sin cis

8 8 8
iπ π π⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

e. if 2 2 2 2
2 2

n

i
⎛ ⎞+ −⎜ ⎟+
⎜ ⎟
⎝ ⎠

  is a real number 

    cis cis 1 0
8 8

n
n iπ π⎡ ⎤⎛ ⎞ ⎛ ⎞= = = ± +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

cos sin
8 8

n niπ π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 so sin 0
8

nπ⎛ ⎞ =⎜ ⎟
⎝ ⎠

      
8

n kπ π=  

 8 wheren k k J= ∈    or   0, 8, 16,...n = ± ±  

 

f. The roots of  8 1z =   are all on a circle of radius one, all the roots are equally  

 separated by  2 45
8
π

= °  , there are  8  roots. 
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