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VCAA Sample Questions 2006 — Specialist Mathematics

Written Examination 1

Suggested answers and solutions

Question 1
a. F,=uN
= l><100><9.8
7
=140

The crate will move if F' > F}, ie. If F'>140

Since F' =120, the crate will not move.

b. F-F,=ma
190-140 =100a
50 =100a
a=0.5m/s’
Question 2

BC = a and AC = b since OABC is a
parallelogram.

OC * AB =0 since AB is perpendicular to ocC.
w(a+b)(b-a)=0

b+b-b-a-a-a-b=0

SR
1S
N
1N}
o Q

ol =laf" -0
|l3| = |c~l| so all sides have the same length.

Opposite sides are parallel, since it is a
parallelogram.
Hence OABC is a rhombus.

Question 3
a. f (x)=arctan (x )+ xarctan (x)

f(x) = 12+x>< 12+1><arctan(x)
I+x 1+x
l+x° l+x

- +arctan(x)
I+x

= arctan (x ) + >

l+x

b. Points of inflection occur when f"(x)=0.
S'(x)=0
2
1 N (x"+1)=2x(x+1) _0
1+x° (x> +1)°

X Hl+x?+1-2x*-2x=0
2-2x=0

x=1

f (1) = arctan (l ) +arctan (1)

Ja T
=—4—

4" 4
_T

2

Point of inflection at (1,5)

Question 4
a. Differentiating with respect to x:

L er)-4 (0 )=2-(5)

@L{dulﬁ+xd0ﬂﬂ=o
dy dx

b. Wheny =2

4-4x=38
x=-1
dy 2°
dx 2(1-2x-1x2)
2
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Question 5
a. Substituting z = 3i we have

(3i) -2(3i) +9(3i)-18
= -27i+18+27i-18
=0

So z =3i is a solution.

b. As all coefficients are real and z —3i is a factor
then z + 3i is also a factor.

(z—3i)(z+3i)(z+a)=0
(22 +9)(z+a)=0
So 9a=-18

a=-2

So the solutions are =31, 3i, 2

Question 6

a. %(COS_I (\/g

X — (3x) x3

))J—

\/1—3x 2\/5

_1 3

“io3x 2Bx
VE)

T 21-3xvx

.

B 24 x = 3x7

b. ia’x—cos (\/5]
24x =3x7

-+/3 1

S0 — f\/x_3x2dx=cos‘1(\/§:
fﬁdx—\/gzcosl(\/g]

1
4

1
6

2T
B2
_ 3w
18

Question 7
y = [sin’ (x) cos” (x)dx
- fsin(x) sin’(x)cos’ (x)dx
= [sin(x)(1- cos’(x))cos” (x)dx

du )
Let u =cos(x),so — = —sin(x
e ()Sodx (x)

Therefore, making the substitutions
y= fsm (x)(l u )u2 - (x)
=f—(u2 —u4)du

u u
=———+¢C
5 3
| | I
=gcos (x)——cos (x)+c
»(0)=0
5 3
cos (0)_c0s (0)+c=0
5 3
l—l+c=0
5 3
_2
15
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Question 8

V=Jrfx2dy
16

x[(1610g, (4)-8)-(1610g, (2)-0)]
m [1610g, (4)-16log, (2)-8]

=7 [16log (y+2)- 4y]
[
[
[

7 [16log, (2)-8]
8 [2log, (2)-1]
=87 [loge (4)—1] cubic units

Question 9

a. Vertical asymptotes occur when x° +4x+5=0
A=(4) -4(1)(5)
=16-20
=-4
As A <0, x*+4x+5 has no real solutions
So there are no vertical asymptotes.

b.
3

fz—dx=f—2dx
X +4x+5 (x+2) +1
=3tan” (x+2)+c

S A=3,B=2

C.

d
Turning points occur when d_y =0.
x

dy  -3(2x+4)

dx (x> +4x+5)

When d—y=0

dx
2x+4=0

x=-2

J3-2 3

—d
x> +4x+5

Area =
-2

= [3 tan™' (x + 2)]_23_2

=3tan”' (\/§ )— 3tan™ (0)

=TT

T octan (x4 7)< E
2 2

—5—ﬂ<5tan_1(x+7)<5—n
2 2

—5—n+c<5tan‘l(x+7)+c<5—ﬂ+c
2 2
-1 S
For 5tan (x+7)+c>0then—7+c>0,so

S
CcC>—.



VCAA Sample Questions 2006 — Specialist Mathematics

Written Examination 2 Section 1

Suggested answers and solutions

I 1 E|]|2]|]C|3 | E|4]|D]|]5]|B
6 | A| 7] C|8]A| 9] D]J]I0|B
11| E |12 D |13]C |14 ]| E/|I5S|B
16| D|I17]|A|I8] B|[I9] A[20] E
21 | E |22 ] C
Question 1
Y
-x*+1 A
r= 2x
2
L (1,0)
2x  2x . >
-x 1
= — 4 —
2 2x
Vertical asymptote at x =0 ©0.2) 4 (1’.'2)
-X
As x > x00, — —0,.. y > —
s X o y >
Therefore y = %x is also an asymptote
" E Diagram for Question 2
Question 3
Question 2 sin ( T )
2 2 A. <
(x_h) +(y_k) =1 5 =tan(£)
2 2
Centre: (1, - 2) 5
Lh=Lk=-2
1 B 1
Also, the lengths of the major and minor axes give B ¢ T\
a=1,b=2 €0 ( 5 ) 1
5 (y + 2)2 tan (ﬂ)
(x-1) +—" =1 5
4 JT
=tan| —
5
= C
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172}
z.
=]

o

(@}
Q
7]

=.

=
/_\/_\
\_/\___/

(@)

o

w2
—

| Q

|

(@)

=]

2]

v DRy Y

z.
=

(@)
o}
2

N
A RV
SN—————  ~ _

= tan
Alternatively
cot 3—” -2
10 X
0 X
3
3 2 .
cot| — | =tan el
5] ( %)
=tan(£)
5
D. 2tanlljt)'
= tan 2x£
1-tan’® T 10
10
T
=tan| —
5
27
E 2tan| —
> = tan 2><2—Jr
1-tan? 2—n 3
5
4
=tan| —
)

Therefore option E is incorrect.

Question 4

The period of the graph is & . Therefore,
2

a
La=2

The graph is translated by % units in the

o o T
positive x- direction. Therefore b = 7

-.D

Question 5

As the polynomial has real coefficients then the
Complex Conjugate Rule applies. Hence, any
complex roots must occur as a conjugate pair.
Hence, it is not possible to have an odd number

of non-real roots. So, answer B must be false

Question 6

If [w] = 1.5 then w =1.5cis@
Therefore,
w' =1.5"cis (—0)
2
=—cis (-0
2 cis(-0)
So, P is the best representation

SA

Question 7

The shaded region corresponds to

{z:Arg(z)>%}ﬂ{z:Arg(z)<%}

= C
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Question 8

B

3

j’cosz (xx)sin’ (x )dx =fcos2 (ox)sin’ (x)sin (x )dx

0

% WY

0

Let u =cos (x)
du

a‘-Sll’l X)

—du

When = u=cos|®
3 3

dx =

Question 9

When x=%, F'(x)=0

0<x<%, F’(x)>0
%<x<n, F'(x)<0

. JU
Therefore a local maximum occurs at x = —

= [cos’ (x)(l —cos’ (x))sin (x)dx

When X=u, F’(x)= 0
%<x<ﬂ, F'(x)<0
Jr<x<37ﬂ, F'(x)<0

Therefore a stationary point of inflexion occurs at
X =7JU

When X =— F'(x)=0
Jr<x<37ﬂ, F'(x)<0
37”<x<2jr, F'(x)>0

Therefore a local minimum occurs at x = Sl

RD)

Question 10
x*+y°=9

Differentiating both sides with respect to x

dx y

Question 11

f—dx [log,

],

= log,

b| -log, |a|
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Question 12

y=+x"-9
Syt =x"-9
X =97 +9

4 4
V=n(5dy- ‘49 )
n{ ly ﬂ{0/+ )dy
4
=nf(25—(y2+9))dy
0
4
=a((16-y")d
ﬂ[( ¥’ )y
~D

Question 13

A |lg|2 + |g|2 = |c~z|2 by Pythagoras’ Theorem
Therefore: true

B b+c=a
na-c=b
So
bi(a-¢)=bb
=[of’
Therefore: true
¢ btc=a
a-b=c
So
bi(a-b)=bL
- effeleos (90°)
=0
= [fd]

Therefore: false

D d4db= |q| |lg| cos(6) by dot product rule
Therefore: true

E
=|all¢[sin ()

Therefore: true

e =Ja]deos (90°-0)

Hence the correct answer is C

Question 14

r(t)= 2sin(t)g'+cos(t)z
x=2sin(r) y=cos(t)
%=sin(t)

sin” (¢)+cos” (¢)=1
2

X 2
Sl=1 +y =1
2

2

—+y* =1
4 y

Now O=<t=nm
When =0, x=0

When t=%,x=2

When t=m, x=0

S 0=sx=<2

Question 15

r
J
r
L
i
5gcos30°
30°
~
L 5gsin30°
5g

30°
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S5gsin30i+ (N -5g cos30)j = 5Sai
S5gsin30 =5a

g

a=—
2

.. B

Question 16

Tsin30° Ceiling
3 ~ | =

T Tcos30°

30° | 30°
30°

L.

(T'sin30-T'sin30)i+ (7 cos30°+ T cos30°-10g ) =0
2T cos30-10g =0

273
2

10g

10g

T

10g
NE)
10g

3

&

o

Question 17

Y F=5a
@i+ ) (i+10/ )+ (3i-3))=5a
6i+8) =5a
g -0
=2 ’
S A

Question 18
u=-21,t=10,a=9.8

1,
S=ut+—at
2

s =—21><10+%><9.8><102

=280
S h=280m
B

Question 19

N
~

Mg

As the body is on the point of sliding down the
plane, the friction force acts up the plane.

SA

Question 20

N
dx x

p. &_-d
dx x

C. @=—e'x
dx

o b2
dx x

g o 1
dx x

As the slope field has the form of a hyperbola in

a .
the form y =—,for a > 0, this corresponds to
X

answer E
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Question 21

dy
—=-k(y-4), =0, y=20
dt (y ) ! Y

Question 22

V=X +hf,(x0)
= 2+O.ZCos(0)
=22

Vo= +hf,(xl)
=22+02/'(0.2)
=2.2+0.2cos (E)

2

=2.2+0.2cos(0.1)

= C
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Written Examination 2 Section 2

Suggested answers and solutions

Question 1

a. rls
= (2 —-2cos (t))(sin (t ))+ (1 +sin (t))(2 cos (t ))
=2sin(t)-2cos(¢)sin (¢ )+2cos(¢)+2sin (¢ )cos (¢
=2sin(t)+2cos(¢)

The particles will be at right angles to each other
when rls =0

Hence, 2sin (t)+ 2cos (t) =0
2sin (t)= -2cos (t)

tan(t)= -1
3z
l=—
4
b. :
x=2—2cos(t) y=1+sm(t)
cos(t)=2;x sin(t)=1-y

cos’ (¢)+sin’(¢)=1

(2_x)2+(1—y)2=1

2

()6—42)2 +(y—l)2 1

Now t=20..x=20

2
.'.@+(y—l)2 =1, x=0

e

¢. Velocity of particle R:
7= 2sin(t)£ + cos(t)z

Speed of particle R:

|ij| = \/(2 sin (¢ ))2 + (cos (¢ ))2
= \/4sin2 (¢)+cos’(¢)

Velocity of particle S:
§=cos(t)i- 2sin(t)!'

Speed of particle S:

|§| = \/(cos (¢ ))2 + (2 sin (¢ ))2
= \/cosz (¢)+4sin®(?)

Therefore particles R and S move at the same
speed at any given time

Velocities will be equal when
2sin(t)£' + cos(t)z = COS (t)i - 2sin(t)z

Therefore:

2sin(t)= cos(t) and cos(t)= —-2sin (t)
tan(t)=% tan(t)=_?1
Astan (t) cannot equal both % and _71

simultaneously, the particles can never have the
same velocity.
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Question 2
a. i u=0,s=400,r=28

I,
S=ut+—at
2

400=0x8+%xax64

400 =32a
a=12.5 m/s’

ii. V=u+at
v=0+12.5%x8&
=100 m/s

N
A
i

5000

O.5v2 -

Y
400g

EF=ma

(-5000-0.5v" )i + (N - 400g ) j = 400ai

. 400a = 5000 - 0.5v*

_ =5000-0.5v
400

ii.

jii.

dv
a= VE
Ldv_=5000-0.5v"
Vax T 400
- (10000 +v*)
T 800
dv (104 + vz)
dx 800v

dv (1 0" +v° )
dx  800v
dx  800v

(10°+v?)

When x =0, v=100 (from a. ii.)
°  800v

¥ 1& (104+v )

Letu =10* +2
When v=100 u=2x10"
v=0 u=10"

I
|
Q.

Il
&

10*

=400 [loge :fxm

= 400 log, (2x10* )-log, (10* )]
=4001log, (2)

=277m
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. (10" ++*)
T AT
dv (104 + vz)
dar 800
dT 800

dv (10" +2?)
° 1
T=—8001[0 o

dv

100 1
=800 dv
—{ 10% ++°

=6.28s

Flatl Flakz Flots
;¥15899f(IBBBB+H

“We=
“Wa=
“My=
“Ne=
“NWeE=

W T HOOL
Amin=-5
“max=118

JFOxMdx=p.cB1BE:

Alternatively:
frlnt 286 C1BaaE
+RED . maH: 188

. 2831853687

Question 3
a.
Im(z)
Y
w

b.
- V=6 +8’

=100

=10

veES

ii.

Im

> Re @)
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C. U+iw=w
Uu=w+iw
=7-i-Ti-1
u=6-8i
d. |Z—u|=|z—v|
|x+iy—6+8i|=|x+iy—6—8i|
J(r=6) +(y+8) = J(x-6) +(y-8)
(v+8) =(y-8)
sy=0
Im(z)
™ Re )
e.

OV =6i+8;
OW =Ti+]
S WO=-Ti-j

WV =WO+0V
=-i+7]

WOWYV = ‘W—OHW‘COSQ where 01s LOWV
(=7)(=1)+(=1)(7)= V49 +1x+/49 + 1 cos O

0 =2\/%c0s0

cosf =0

-.0=90°

. LOWYV 1is aright angle.

Question 4
a. x=20, 1-x*>0
-1<x<1
. x€[0,1)
b. D=2x£(0.5)

=2x2(05) (1-0.52)% L

(1-05%)

=3.71

c. tanf=f'(0.5) where 6 is the angle f(x)

makes with the x-axis.

Note that the angle the platform makes with the

1
surface is 5 -0.

Flotl Flot Flobs
sMIEZRT™ . Dk —RE D
3.25+1f(1-H2)*.2

M=
M=
“Ny=
“Ne=

£'(0.5)=1.23557
tan0 =1.23557
6 =51.015°

So, the angle the platform makes with the surface
is 39°.
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d. i. 2 Question 5
1 1
(f(x))2= 2x5(1—x2)2+;1 a.
-y .
J
The middle term is given by ,‘N 7
1 L 1 F
2x2x2(1—x2)4x— ®

l
(1—x2)4 60° * i

=4x?
= 4x
iii. V=thy2dx 758
0.5
=th dx1-x* +4x + ! = |dx b. EF=ma
0 1-x

(75g5in30° - F, )i + (N -75g cos30°) j = 75ai

iii. The volume of the platform is 1.97 m’

75gsin30° - F,, = 75a (1)
frnlntoidulol—xen
+E LR+l AT C1—K20
FakaB. .00 N =75gcos30° (2)
1.93371e844
Fy=uN
1 V3
=—x75gx—
5 £ 2
Therefore 7 packages are needed. Subin (1)
Alternative solution: 75q = 75gxl_lx75g><£
Vx=ﬂfy2 dx 25 2
g 1 NE)
N | a=S—-—xgx—
=.717f02 (4x VI-x" + — +4\/;) dx 2.5 2
1-x a=§(l—£]
1 2 5
r 3 3
= —%(1—)c2)2+Sin'l(x)+§x2 A
L c. 1 u=0,a=§(l—%),5=6
4 7 22 B
=T |—+—+—-——
_3 6 3 2 s=ut +—at’
3
=6.075=6.1m 6=lx§ _ﬁ 2
so they need 7 packages. 2 2 S
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ii.
2 2
V- =u"+2as

—0+2xS 1_£ 6
2 5

v’ =38.431
v=6.2 m/s
d.
j
1600 6.2 Li

v()=16.25in60° -6.2c0s60°j - gtj
=3.33i-(3.1+gt);

2
l:(t)=3.1\/§t£'—(3.1t+%)j+c

Jay hits the ground when
2

3+ S
2

492 +3.1t-2=0
t=0.3966 s

Therefore the horizontal distance is given by
3.14/3 x0.3966
=2.1m

e. v(t)=3.1V3i-(3.1+gt),
v(0.3966)=3.14/3; - (3.1+9.8x0.3966) /
=5.369i-6.987
|v|=8.812
p=my
p=75x8.812
=661 kg m/s
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