

Trial Examination 2006

VCE Specialist Mathematics Units 3 & 4

Written Examination 1

Suggested Solutions

Question 1

a.
$$2-3i$$
 A1

b.
$$(z-2-3i)(z-2+3i)$$

= $(z-2)^2 - (3i)^2$
= $z^2 - 4z + 13$ A1

c. By division or inspection

$$z = 2$$

Question 2

a.
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

 $= 3q - 2p$
 $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$
 $= 9q - 6p$
 $= 3\overrightarrow{AB}$
So \overrightarrow{AB} is parallel to \overrightarrow{AC} and \overrightarrow{A} is the point in common.

So \overrightarrow{AB} is parallel to \overrightarrow{AC} and A is the point in common. $\therefore A, B \text{ and } C \text{ are collinear.}$

b.
$$\overrightarrow{BC} = 6g - 4p$$

$$= 2\overrightarrow{AB}$$

$$\therefore |\overrightarrow{AB}| : |\overrightarrow{BC}| = 1 : 2$$
A1

Question 3

Use of
$$\cos(2x) = 2\cos^2(x) - 1$$
 M1
LHS = $\cos^2(2x) - \sin^2(x) = (2\cos^2(x) - 1)^2 - \sin^2(x)$ A1
= $4\cos^4(x) - 4\cos^2(x) + 1 - (1 - \cos^2(x))$
= $4\cos^4(x) - 3\cos^2(x)$ A1
= $\cos^2(x)(4\cos^2(x) - 3)$
= $\cos^2(x)(2\cos(x) - \sqrt{3})(2\cos(x) + \sqrt{3}) = \text{RHS}$ A1

Question 4

$$f(x) = \arctan(2x)$$

$$= \arctan\left(\frac{x}{1/2}\right)$$

$$f'(x) = \frac{1/2}{1/4 + x^2}$$

$$= \frac{2}{4x^2 + 1}$$
A1

$$f''(x) = -\frac{16x}{(4x^2 + 1)^2}$$

Question 5

$$\frac{dT}{dt} = k(T - 20) \qquad (k < 0)$$

$$\frac{dt}{dT} = \frac{1}{k(T - 20)}$$

$$t = \frac{1}{k} \log_e(T - 20) + c$$
 (since $T - 20 > 0$, $|T - 20|$ is not required)

When t = 0, T = 80

$$0 = \frac{1}{k} \log_e(60) + c$$

$$c = -\frac{1}{k}\log_e(60)$$
 M1

$$t = \frac{1}{k} \log_e \left(\frac{T - 20}{60} \right)$$

When t = 10, T = 65

$$10 = \frac{1}{k} \log_e \left(\frac{45}{60} \right)$$

$$k = \frac{1}{10} \log_e \left(\frac{3}{4} \right)$$
 A1

$$t = \frac{10}{\log_e\left(\frac{3}{4}\right)}\log_e\left(\frac{T - 20}{60}\right)$$

The time taken to cool to 50°C is $\frac{10\log_e\left(\frac{1}{2}\right)}{\log_e\left(\frac{3}{4}\right)}$ minutes. A1

Question 6

$$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{\sqrt{1 - 4x^2}} dx = \frac{1}{2} \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{\sqrt{\frac{1}{4} - x^2}} dx$$
 M1

$$= \frac{1}{2} \left[\sin^{-1}(2x) \right]_{\frac{1}{4}}^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\sin^{-1}(1) - \sin^{-1}\left(\frac{1}{2}\right) \right)$$

$$= \frac{1}{2} \left(\frac{\pi}{2} - \frac{\pi}{6} \right)$$

$$= \frac{\pi}{6}$$
A1

Hence
$$k = \frac{1}{6}$$

Question 7

$$\frac{dy}{dx} = \sin(x)\cos^2(x)$$

$$y = \int (\sin(x)\cos^2(x))dx$$

Let
$$u = \cos(x)$$
 and so $\frac{du}{dx} = -\sin(x)$.

$$y = -\int u^2 du$$
 A1

$$y = -\frac{u^3}{3} + c$$

$$y = -\frac{\cos^3(x)}{3} + c$$

Apply the condition to find the value of c.

$$-\frac{4}{3} = -\frac{1}{3} + c$$
 and so $c = -1$

Hence
$$y = -\left(\frac{\cos^3(x)}{3} + 1\right)$$
.

Question 8

a.

where T = tension in the cable

b. $\Sigma F = ma \Rightarrow 500 \times g - T = 500 \times 1.8$

$$T = 500(g - 1.8)$$

= 500×8
= 4000 N

A1

A1

c.

where N = normal reaction

A1

d.
$$\Sigma F = ma \Rightarrow 80 \times g - N = 80 \times 1.8$$

$$N = 80 \times 8$$
$$= 640 \text{ N}$$

A1

Question 9

a.

Maximum turning point labelled correctly and horizontal asymptote at y = 0.

A1

b.
$$b^2 - 4c < 0$$
 or $b^2 < 4c$

A1

c.
$$f(x) = (x^2 + bx + c)^{-1}$$

$$f'(x) = \frac{-(2x+b)}{(x^2+bx+c)^2}$$
 M1

$$f'(x) = 0$$
 when $2x + b = 0$

Since
$$x = -3$$
, $-6 + b = 0$ and so $b = 6$.

A1

d. There is an asymptote at x = 0,

so
$$x^2 + 6x + c$$
 has x as a factor.

$$\therefore c = 0$$

A1

e.
$$f(x) = \frac{1}{x^2 + 6x}$$

 $= \frac{1}{x(x+6)}$
 $= \frac{1}{6} \left(\frac{1}{x} - \frac{1}{x+6} \right)$ A1
So $A = -\frac{1}{6} \int_{-2}^{-1} \left(\frac{1}{x} - \frac{1}{x+6} \right) dx$
 $= -\frac{1}{6} \left[\log_e \left| \frac{x}{x+6} \right| \right]_{-2}^{-1}$ M1
 $= -\frac{1}{6} \left(\log_e \left(\frac{1}{5} \right) - \log_e \left(\frac{1}{2} \right) \right)$
 $= -\frac{1}{6} \log_e \left(\frac{2}{5} \right)$ $\left(= \frac{1}{6} \log_e \left(\frac{5}{2} \right) \right)$ A1