Working space

Instructions

Answer **all** questions in the spaces provided. A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the acceleration due to gravity to have magnitude g m/s², where g = 9.8.

Question 1

Given that $P(z) = z^4 - 4z^3 + 6z^2 - 4z + 5 = 0$ and P(2 + i) = 0, find all the roots of P(z) = 0.

3 marks

 \underbrace{u}_{i} and \underbrace{v}_{i} are vectors defined by $\underbrace{u}_{i} = \cos(\theta)\underbrace{i}_{i} + \sin(\theta)\underbrace{j}_{i}, \underbrace{v}_{i} = \sin(\theta)\underbrace{i}_{i} + \cos(\theta)\underbrace{j}_{i}$ and $0 < \theta < \frac{\pi}{2}$.

a. Show that *u* and *y* are unit vectors.

1 mark

1 mark

b. Let α be the angle between the vectors u and v. Express α in terms of θ .

c. Find α when $\theta = \frac{\pi}{6}$.

If $\theta = \frac{\pi}{3}$, find the vector resolute of \underline{v} in the direction of \underline{u} .	1

a. Express $\frac{x+2}{x^2+x}$ in partial fractions with integer numerators.

2 marks Hence show that $\int_{-4}^{-3} \frac{x+2}{x^2+x} dx = \log_e\left(\frac{a}{b}\right)$ where *a* and *b* are positive integers. b. Find the values of *a* and *b*.

3 marks

a. Show that, for
$$0 < x < \frac{1}{3}$$
, $\frac{d}{dx}(\cos^{-1}(\sqrt{3x})) = \frac{-3}{2\sqrt{3x(1-3x)}}$

2 marks **Hence**, find the exact value of $\int_{\frac{1}{12}}^{\frac{1}{6}} \frac{1}{\sqrt{3x(1-3x)}} dx$ b.

3 marks

An object of mass 2 kg falls from rest from a height of 50 metres. Its fall is opposed by an air resistance of magnitude of $0.05v^2$ newton, where v is its velocity.

a. Write an equation of motion for the falling object.

1 mark Show that $\frac{dx}{dv} = \frac{40v}{40g - v^2}$ b. 2 marks Hence, find the exact distance travelled for the object to reach a speed of 10 m/s. c. 3 marks

Let $f(x) = \arctan(x) + \frac{\pi}{4}, x \in \mathbb{R}$.

a. On the axes below, sketch the graph of f(x). On the sketch, clearly indicate the asymptotes and axes intercepts.

3 marks

b. Solve $f(x) = \frac{5\pi}{12}$

1 mark

At time t seconds, a particle has position vector

 $r = (3\cos(t) - \sin(2t))i + (3\sin(t) + \cos(2t))j$, where $t \ge 0$.

a. Find its velocity vector y.

b. Find its maximum speed.

3 marks

2 marks

c. Show that the particle never stops.

1 mark

The position vector of a particle is given by $r(t) = 2\tan(t)i + \sec(t)j$ where $t \ge 0$.

a. Find the Cartesian equation of the path of the particle.

2 marks	

b. Sketch the curve on the grid below, showing all important features.

c. Find the exact volume of revolution formed by rotating this curve between y = 1 and y = 2 about the *y*-axis.

2 marks

Total 40 marks

Specialist Mathematics Exam 1 2007 Solutions

Question 1

The equation has real coefficients therefore the conjugate root theorem applies. So $2 - i$ is another root.	A1
The two factors can be expressed as a quadratic as follows:	
$(z-2-i)(z-2+i) = z^2 - 4z + 5$	A1
Divide $z^2 - 4z + 5$ into $z^4 - 4z^3 + 6z^2 - 4z + 5$ to obtain $z^2 + 1$	M 1
$z^2 + 1$	
$z^2 - 4z + 5\overline{z^4 - 4z^3 + 6z^2 - 4z + 5}$	
$z^4 - 4z^3 + 5z^2$	
$z^2 - 4z + 5$	
$z^2 - 4z + 5$	
$\therefore (z^2 - 4z + 5)(z^2 + 1) = 0$	
(z-2-i)(z-2+i)(z-i)(z+i) = 0	
$\therefore z = 2 + i, 2 - i, i, -i$	
Solutions are: $z = 2 \pm i$ and $z = \pm i$	A1

Question 2

a. $\underline{u} = \cos(\theta)\underline{i} + \sin(\theta)\underline{j}$ and $\underline{v} = \sin(\theta)\underline{i} + \cos(\theta)\underline{j}$

$$|\underline{u}| = \sqrt{\cos^2(\theta) + \sin^2(\theta)}$$

$$= \sqrt{1}$$

$$= 1$$

$$|\underline{v}| = \sqrt{\sin^2(\theta) + \cos^2(\theta)}$$

$$= \sqrt{1}$$

$$= 1$$
A1

Hence, both \underline{u} and \underline{v} are unit vectors.

b.
$$\cos(\alpha) = \frac{\cos(\theta)\sin(\theta) + \sin(\theta)\cos(\theta)}{\sqrt{1 \times \sqrt{1}}}$$
 M1
 $= 2\sin(\theta)\cos(\theta)$
 $= \sin(2\theta)$ A1
c. $\alpha = \cos^{-1}(\sin(2\theta)) \text{ or } \alpha = \frac{\pi}{2} - 2\theta$ A1
 $= \cos^{-1}(\sin(\frac{2 \times \pi}{6}))$] A1
 $= \cos^{-1}(\sin(\frac{\pi}{3}))$
 $= \cos^{-1}(\frac{\sqrt{3}}{2})$

d.
$$(\underline{v} \cdot \hat{u})\hat{u} = \left(\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}\right)\left(\frac{1}{2}\underline{i} + \frac{\sqrt{3}}{2}\underline{j}\right)$$

 $= \frac{\sqrt{3}}{4}\underline{i} + \frac{3}{4}\underline{j}$ or
 $= \frac{1}{4}\left(\sqrt{3}\,\underline{i} + 3\underline{j}\right)$
A1

a. $\frac{x+2}{x^2+x} = \frac{A}{x} + \frac{B}{x+1}$ where *A* and B are constants. A1 $\therefore x + 2 = A(x+1) + B(x)$ Let x = 0 so A = 2Let x = -1 so B = -1 $\therefore \frac{x+2}{x^2+u} = \frac{2}{x} - \frac{1}{x+1}$ **b.** $\int_{-4}^{-3} \left(\frac{x+2}{x^2+x}\right) dx = \int_{-4}^{-3} \left(\frac{2}{x} - \frac{1}{x+1}\right) dx$ $= [2\log_e |x| - \log_e |x+1|]_{-4}^{-3}$ $= (2\log_e 3 - \log_e 2) - (2\log_e 4 - \log_e 3)$ $= \log_e (27/32)$ Answer: a = 27, b = 12

Note: cannot get this mark from logs of negative numbers. Equivalent multiples of *a* and *b* in non-simplified fraction is correct.

Question 4

a.	Let $u = \sqrt{3x}$ and $w = 3x$	
	$u = \sqrt{w}$ and so $\frac{du}{dw} = \frac{1}{2\sqrt{w}}$ and $\frac{dw}{dx} = 3$	
	$\frac{du}{dx} = \frac{du}{dw} \times \frac{dw}{dx}$	
	$=\frac{3}{2\sqrt{3x}}$	A1
	$y = \cos^{-1}(u)$ and so $\frac{dy}{du} = \frac{-1}{\sqrt{1-u^2}}$	
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	
	$=\frac{-1}{\sqrt{1-u^2}}\times\frac{3}{2\sqrt{3x}}$	M1
	$=\frac{-1}{\sqrt{1-3x}}\times\frac{3}{2\sqrt{3x}}$	
	$=\frac{-3}{2\sqrt{3x(1-3x)}}$	

Hence shown.

b.
$$\int_{\frac{1}{12}}^{\frac{1}{6}} \frac{1}{\sqrt{3x(1-3x)}} dx$$

$$= -\frac{2}{3} \int_{\frac{1}{2}}^{\frac{1}{6}} \frac{-3}{2\sqrt{3x(1-3x)}} dx$$

$$= -\frac{2}{3} [\cos^{-1}(\sqrt{3x})]_{\frac{1}{2}}^{\frac{1}{6}}$$

$$= -\frac{2}{3} (\cos^{-1}(\frac{1}{\sqrt{2}}) - \cos^{-1}(\frac{1}{2}))$$

$$= -\frac{2}{3} (\frac{\pi}{4} - \frac{\pi}{3})$$

$$= \frac{\pi}{18}$$
A1 for $-\frac{2}{3}$ in front

MI for recognition

MI for rec

a.
$$2a = 2g - 0.05v^2$$
 $\therefore a = g - \frac{v^2}{40}$ **A1**

b. Using $a = v \frac{dv}{dx}$ in the equation of motion gives:

$$v\frac{dv}{dx} = \frac{2g - 0.05v^2}{2}$$

$$\frac{dv}{dx} = \frac{2g - 0.05v^2}{2v}$$

$$\frac{dx}{dv} = \frac{2v}{2g - 0.05v^2}$$
A1

Multiplying numerator and denominator by 20 gives

$$\frac{dx}{dv} = \frac{40v}{40g - v^2}$$
 as required.

c. The required distance is given by the integral: $\int_{0}^{10} \frac{40v}{40g - v^2} dv$ A1

Note: The integral must have correct limits and dv. Does not need to have a modulus of $\frac{40v}{40g - v^2}$, since we are after distance and the graph was not asked for.

$$x = -20 \int_{0}^{10} \frac{-2v}{-v^2 + 40g} dv$$
 M1

$$= \left[-20\log_e \left(40g - v^2\right)\right]_0^{10}$$

$$= 20\log_e \left(40g - 100\right) + 20\log_e \left(40g\right)$$
M1

$$= -20 \log_{e} (40g - 100) + 20 \log_{e} (40g)$$

= $20 \log_{e} \left(\frac{40g}{40g - 100}\right)$
= $20 \log_{e} \left(\frac{2g}{2g - 5}\right)$
Note: $20 \log_{e} \left(\frac{40g}{40g - 100}\right)$ can get the last A1 mark. A1

: Maximum speed is 5.

A1

c.
$$\sqrt{13 - 12\sin(t)}$$

 $-1 \le \sin(t) \le 1$
 $\therefore -12 \le 12\sin(t) \le 12$
 $\therefore \sqrt{13 - 12} = 1, \sqrt{13 + 12} = 5$
 \therefore speed will always be between 1 and 5
 \therefore it never stops

2 marks: A1 shape and asymptotes $y = \pm \frac{x}{2}$; A1 *y*-intercepts $(0, \pm 1)$

A1

c.
$$\int_{1}^{2} \pi x^{2} dy = \int_{1}^{2} 4\pi (y^{2} - 1) dy$$
$$= \left[4\pi \left(\frac{y^{2}}{3} - y \right) \right]_{1}^{2}$$
$$= 4\pi \left[\left(\frac{8}{3} - 2 \right) - \left(\frac{1}{3} - 1 \right) \right]$$
$$= \frac{16\pi}{3} \text{ cubic units}$$
A1