Specialist Mathematics Exam 2: SOLUTIONS

Multiple-choice Answers

Section 1: Multiple-choice Solutions

Question 1 Answer D

The range of $\cos^{-1}(3x)$ is $[0, \pi]$ and so the range of $y = a\cos^{-1}(3x) + \frac{\pi}{2}$ will be: $\left[a \times 0 + \frac{\pi}{2}, a \times \pi + \frac{\pi}{2}\right] = \left[\frac{\pi}{2}, (2a + 1)\frac{\pi}{2}\right]$

Question 2 Answer B

The hyperbola is $\frac{(x-1)^2}{4} - \frac{y}{9}$ $\frac{(x-1)^2}{4} - \frac{y^2}{9} = 1$ which has centre at $(1, 0)$. The vertices are 2 units either side of the centre, given by $\sqrt{4}$ in the equation. Hence they are 4 units apart.

Equations of asymptotes: $y = \pm \frac{3}{2}(x - 1)$ which can be written as: $3x - 2y - 3 = 0$ and $-3x - 2y + 3 = 0.$

Question 3 Answer C

$$
z = \left[8\operatorname{cis}\left(-\frac{5\pi}{6}\right)\right]^3
$$

$$
= 512\operatorname{cis}\left(-\frac{5\pi}{2}\right)
$$

$$
= 512\operatorname{cis}\left(-\frac{\pi}{2}\right)
$$

and so $|z|$ and Arg (z) are 512 and $-\frac{\pi}{2}$

Question 4 Answer E

$z^4 - 4z^3 + 8z^2 - 8z + 16 = 0, z \in C$

If there are any complex solutions then they will be in pairs as all of the coefficients are real. This eliminates alternatives A and C.

Graphing this polynomial onto the graphics calculator shows no x-intercepts and so there are 4 complex solutions.

Question 5 Answer A

 $a = \sqrt{2} i - j + 7k$ has a magnitude of $\sqrt{2 + 1 + 49} = \sqrt{52}$ or $2\sqrt{13}$.

$$
\therefore \text{ unit vector} = \frac{1}{2\sqrt{13}} \Big(\sqrt{2} \underline{i} - \underline{j} + 7\underline{k} \Big)
$$

Question 6 Answer B

From the graph, the gradient is clearly positive and so alternatives D and E are incorrect. Differentiate the equation:

$$
x^{2} - 4xy + 4y^{2} + x - 12y - 10 = 0
$$

$$
2x - \left(4y + 4x\frac{dy}{dx}\right) + 8y\frac{dy}{dx} + 1 - 12\frac{dy}{dx} = 0
$$

Substituting $x = 6$ and $y = 1$ gives:

$$
12 - \left(4 + 24\frac{dy}{dx}\right) + 8\frac{dy}{dx} + 1 - 12\frac{dy}{dx} = 0
$$

$$
9 = 28\frac{dy}{dx}
$$

$$
\frac{dy}{dx} = \frac{9}{28}
$$

Question 7 Answer D

Let
$$
z = x + iy
$$
 in $|z| = |z + 4|$.
\n
$$
|x + iy| = |(x + 4) + iy|
$$
\n
$$
\sqrt{x^2 + y^2} = \sqrt{(x + 4)^2 + y^2}
$$
\n
$$
x^2 + y^2 = (x + 4)^2 + y^2
$$
\n
$$
x^2 + y^2 = x^2 + 8x + 16 + y^2
$$
\n
$$
8x = -16
$$
 and so $x = -2$

Now $x = \text{Re}(z)$ and so the answer is D.

Question 8 Answer D

 $\cos(3x)e^{\sin(3x)}dx$ 0 6 *r* \int cos $(3x)e^{\sin(3x)}$ Let $u = \sin(3x)$ so $\frac{du}{dx} = 3\cos(3x)$ If $x = 0$ then $u = 0$ and if $x = \frac{\pi}{6}$ then $u = 1$. $\frac{1}{3}\int e^u du$ 0 1 $\int e^u du$ is the result.

Question 9 Answer A

$$
\overrightarrow{BA} \cdot \overrightarrow{BC} = |\overrightarrow{BA}| |\overrightarrow{BC}| \cos \angle ABC
$$

$$
\overrightarrow{BA} = \overrightarrow{BO} + \overrightarrow{OA}
$$

$$
= -(\underline{i} - \underline{j} + \underline{k}) + 2\underrightarrow{i} + \underline{j} - \underline{k}
$$

$$
= \underline{i} + 2\underrightarrow{j} - 2\underline{k} \text{ and so } |\overrightarrow{BA}| = 3
$$

$$
\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}
$$

= -(\underline{i} - \underline{j} + \underline{k}) + 3\underline{i} + \underline{j}
= 2\underline{i} + 2\underline{j} - \underline{k} \text{ and so } |\overrightarrow{BC}| = 3

 $\overrightarrow{BA} \cdot \overrightarrow{BC} = 2 + 4 + 2$ and therefore $\cos \angle ABC = \frac{8}{9}$

Question 10 Answer C

$$
f(x+h) \approx f(x) + h \log_e(x) \text{ where}
$$

\n
$$
f(1 + 0.1) \approx f(1) + 0.1 \times \ln(1)
$$

\n
$$
= 3
$$

\n
$$
f(1.1 + 0.1) \approx f(1.1) + 0.1 \times \ln(1.1)
$$

\n
$$
= 3 + 0.009531
$$

\n
$$
= 3.009531
$$

\n
$$
f(1.2 + 0.1) \approx f(1.2) + 0.1 \times \ln(1.2)
$$

\n
$$
= 3.009531 + 0.01823
$$

\n
$$
= 3.02776
$$

Answer: 3.0278

Question 11 Answer B

A volume of revolution around the *y*-axis is found by evaluating $\int \pi x^2 dy$. The lower limit is $y = 1$ and the upper is *e*.

$$
y = e^{2x}
$$

2x = log_e (y)

$$
x = \frac{1}{2} loge (y)
$$

The volume formed by rotating the curve around the *y*-axis $=$ $\frac{\pi}{4}$ \int $(\log_e(y))^2 dy$ *e* 1 $=\frac{\pi}{4} \int_{0}^{x} (\log_e(y))^2$

The volume formed by rotating the line $x = \frac{1}{2}$ around the *y*-axis $= \pi \int_{a}^{b} \left(\frac{1}{2}\right)^2 dy$ 1 $=\pi\int^e\left(\frac{1}{2}\right)^2$

Required volume $\frac{\pi}{4}$ $\int (1 - \log^2(y)) dy$ *e* 2 1 $\frac{\pi}{4} \int (1 - \log^2(y))$

Question 12 Answer E

The graph of the function $y = \frac{x^2 + 3x}{3x}$ 3 $=\frac{x^2+9}{3x}$ has two asymptotes, one vertical $(x = 0)$ and the other oblique $\left(y = \frac{x}{3}\right)$. It also has two turning points as can be seen from the graph of this function. The oblique asymptote with equation $y = \frac{x}{3}$ is also shown.

Question 13 Answer D

A point of inflection occurs where the second derivative is zero and the first derivative does **not** change sign. So, at the point of inflection $\frac{d^2y}{dx^2}$ 2 2 changes sign and $\frac{dy}{dx}$ does not change sign.

Question 14 Answer C

A stationary point of inflection occurs at $x = -1$ since $f'(x) = 0$ and the derivative of $f'(x)$ is zero as well at that point. $f'(x)$ changes from negative to positive through zero at $x = 2$ and so there is a local minimum at this point for the graph of $y = f(x)$. The rate of change of the gradient of $f'(x)$ is zero at $x = 1$ (but the gradient of $f(x)$ is about -4) and so there is a point of inflection at this point.

Question 15 Answer A

It should be noted that $\frac{dy}{dx}$ is

- positive if $y > 0$
- negative if $y < 0$
- infinite (shown by vertical steepness) as *y* approaches zero.

Only alternative A displays these properties.

Question 16 Answer D

The direction of motion at $t = 2$ is given by $\dot{r}(2)$.

$$
\dot{r}(t) = (3 - 4t)\dot{t} + 6\dot{y} + \frac{1}{2\sqrt{t}}\dot{x}
$$

Substituting $t = 2$: $-5i + 6j + \frac{1}{2\sqrt{2}}k$ $2\sqrt{2}$ $-5i + 6j + \frac{1}{2\sqrt{2}}k$ which is equivalent to $-5i + 6j + \frac{\sqrt{2}}{4}k$.

Question 17 Answer B

Let the coordinates of *P* be $(-a, -b)$ where *a* and *b* are both positive. Hence $z = -a - bi$. *Q* (by inspection) is $-b + ai$.

Testing each of the alternatives given:

A. $iz = i(-a - bi) = b - ai$ which is not *Q*. However, it is the negative of what is required and so the answer is **B**.

Alternatively, rotation clockwise through a right angle is equivalent to multiplication by $-i$.

Question 18 Answer E

$$
v = \int (5\sin(2t) - 1)dt
$$

= $-\frac{5}{2}\cos(2t) - t + c$
At $t = 0$, $v = 0$ and so $c = 2.5$
 $v = -\frac{5}{2}\cos(2t) - t + 2.5$
At $t = 1$, $v = -2.5\cos(2) - 1 + 2.5$
Answer: $v = 2.54$

Question 19 Answer B

Acceleration down slope = $g \sin(\theta)$ where

$$
\theta = \arctan\left(\frac{1}{5}\right).
$$

\n
$$
\therefore a = \frac{g}{\sqrt{26}}
$$
 is Jimmy's uniform acceleration.
\n
$$
u = 0, s = 250, a = \frac{g}{\sqrt{26}} \text{ and } v^2 = u^2 + 2as
$$

\n
$$
\therefore v^2 = 0 + 2 \times \frac{g}{\sqrt{26}} \times 250 \text{ and so } v = 30.9995
$$

\nMomentum = mv
\n= 75 × 30.9995
\n= 2325 kgms⁻¹

Question 20 Answer A

Let i and j be unit vectors acting east and north respectively.

The sum of the two forces are:
\n
$$
8j + (-6\cos 60^\circ j - 6\sin 60^\circ i)
$$

\n $= -6\sin 60^\circ i + (8 - 6\cos 60^\circ) i$
\n $= -3\sqrt{3} i + 5i$
\nMagnitude = $\sqrt{(27 + 25)}$
\n $= \sqrt{52}$
\n $= 2\sqrt{13}$

Question 21 Answer B

$$
-mg = \frac{mv^2}{1000} = ma
$$

\n
$$
a = -\frac{1000g + v^2}{1000}
$$

\n
$$
v\frac{dv}{dx} = -\frac{1000g + v^2}{1000}
$$

\n
$$
\frac{dv}{dx} = -\frac{1000y + v^2}{1000v}
$$

\n
$$
\frac{dx}{dv} = -\frac{1000v}{1000g + v^2}
$$

\n
$$
x = \int -\frac{1000v}{1000g + v^2} dv
$$

\n
$$
x = -500\ln(1000g + v^2) + c
$$

\nWhen $x = 0$, $v = 400$
\n
$$
x = 500\ln\frac{9800 + 400^2}{1000g + v^2}
$$

When $v = 0$, $x = 1426$ m

Question 22 Answer C

$$
s = -60, a = -9.8, u = 20, t = ?
$$

\n
$$
s = ut + \frac{1}{2}at^{2}
$$

\n
$$
-60 = 20t - 4.9t^{2}
$$

\n
$$
4.9t^{2} - 20t - 60 = 0
$$

Solving this quadratic using TI-83 QUAD PRGM: $t = -2.01, 6.09$ Ignoring the negative solution, $t = 6.09$ seconds.

Specialist Mathematics Exam 2: SOLUTIONS

Section 2

Question 1

a.
$$
-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i = 1 \text{cis} \left(\frac{3\pi}{4} \right)
$$

Apply de Moivre's theorem:

$$
z^{2} = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i
$$

\n
$$
r^{2} \operatorname{cis}(2\theta) = 1 \operatorname{cis}\left(\frac{3\pi}{4}\right)
$$

\n
$$
r^{2} = 1 \therefore r = 1, u = 1 \operatorname{cis}\left(\frac{3\pi}{4}\right)
$$

\n
$$
2\theta = \frac{3\pi}{4} + 2k\pi, k = 0, 1
$$

\n
$$
u = 1 \operatorname{cis}\left(\frac{3\pi}{8}\right) \text{ and } v = 1 \operatorname{cis}\left(-\frac{5\pi}{8}\right)
$$

M1

A2

b.

Region T is the intersection of the inside of the circle centre $(0, 0)$ and radius 2 with the perpendicular bisector of the line segment joining u and v.

A1 perpendicular bisector

A1 inside of the circle

A1 intersection of the two clearly labelled.

d. For what values of n is u^n purely imaginary?

$$
u^{n} = \left[1 \operatorname{cis} \left(\frac{3\pi}{8}\right)\right]^{n}
$$

$$
= 1 \operatorname{cis} \left(\frac{3n\pi}{8}\right)
$$

If this is purely imaginary then $\cos\left(\frac{3n}{8}\right)$ $\left(\frac{3n\pi}{8}\right) = 0$ **M1**

$$
\frac{3n\pi}{8} = \frac{(2k-1)\pi}{2}
$$
 where $k \in \mathbb{Z}$ or alternatively
\n
$$
\frac{3n\pi}{8} = \frac{(2k+1)\pi}{2}
$$
 M1 for equating angle to $\frac{\text{odd }\pi}{2}$
\nHence $n = \frac{4}{3}(2k-1)$ where $k \in \mathbb{Z}$ or $n = \frac{4}{3}(2k+1)$ for any multiple of $\frac{\pi}{2}$

Question 2

a.
$$
1 + \log_e x = 0
$$

\n $\log_e x = -1$ so $x = e^{-1}$
\nCoordinates of $A = (e^{-1}, 0)$
\n**b. i.** $f'(x) = \frac{x(\frac{1}{x}) - 1(1 + \log_e(x))}{x^2}$
\n $= \frac{1 - 1 - \log_e(x)}{x^2}$
\n**ii.** $f'(x) = 0$
\n $\therefore \frac{-\log_e(x)}{x^2} = 0$
\n $\log_e(x) = 0$
\nWhen $x = 1, y = 1$
\nCoordinates of $B = (1, 1)$
\n**c.** $f''(x) = \frac{x^2(-\frac{1}{x}) + 2x \log_e(x)}{x^4}$
\n $= \frac{-x + 2x \log_e(x)}{x^4}$
\n $= \frac{-x + 2x \log_e(x)}{1 + 2x \log_e(x)}$
\n**41** For both coordinates of zero
\n**41** for both coordinates correct
\n**41**

$$
f''(1.6) = -0.0146
$$

$$
f''(1.7) = 0.0125
$$

 $f''(x)$ changes sign so the concavity changes, hence the point of inflection. **A1** It should be noted that the first derivative does **not** change sign at $x = 1.65$.

e. Equate the first derivative to the gradient between the points $(0, 0)$ and $\left(\frac{1 + \log n}{x}\right)$ $\left(\frac{1+\log_e(x)}{x}\right)_{x}$.

$$
-\frac{\log_e(x)}{x^2} = \frac{\frac{1+\log_e(x)}{x} - 0}{x - 0}
$$

$$
-\frac{\log_e(x)}{x^2} = \frac{1+\log_e(x)}{x^2}
$$

$$
-\log_e(x) = 1 + \log_e(x)
$$

$$
-2\log_e(x) = 1 \text{ and so } \log_e(x) = -\frac{1}{2}
$$

$$
\therefore x = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}
$$

f.
$$
\int_0^{\frac{1}{\sqrt{e}}} \left(\frac{e}{2}x\right) dx - \int_{\frac{1}{e}}^{\frac{1}{\sqrt{e}}} \left(\frac{1+\log_e(x)}{x}\right) dx
$$

 \rightarrow

(This first integral represents the area under the tangent which passes through the origin.) **M1** the difference of two integrals **A1** correct limits

$$
= \left[\frac{ex^2}{4}\right]_0^{\frac{1}{\sqrt{e}}} - \frac{1}{2}\left[(1 + \log_e(x))^2\right]_{\frac{1}{e}}^{\frac{1}{\sqrt{e}}}
$$

 A1 (correct anti-derivative of the $\frac{1 + \log_e(x)}{x}$ function)

$$
= 0.25 - \frac{1}{2}\left[(1 - 0.5)^2 - (1 - 1)^2\right]
$$

$$
= \frac{1}{8}
$$

 \rightarrow

Question 3

a.
$$
OA = -\underline{i} + 3\underline{j} + 2\underline{k}, OB = 3\underline{i} + 6\underline{j} + \underline{k} \text{ and } OC = -4\underline{i} + 4\underline{j} + 3\underline{k}
$$

\n
$$
\overrightarrow{BC} \cdot \overrightarrow{BA} = (\overrightarrow{BO} + \overrightarrow{OC}) \cdot (\overrightarrow{BO} + \overrightarrow{OA})
$$
\n
$$
= (-3\underline{i} - 6\underline{j} - \underline{k} - 4\underline{i} + 4\underline{j} + 3\underline{k}) \cdot (-3\underline{i} - 6\underline{j} - \underline{k} - \underline{i} + 3\underline{j} + 2\underline{k})
$$
\n
$$
= (-7\underline{i} - 2\underline{j} + 2\underline{k}) \cdot (-4\underline{i} - 3\underline{j} + \underline{k})
$$
\n
$$
= 28 + 6 + 2
$$
\n
$$
= 36
$$
\n
$$
B
$$
\n**b.**
$$
\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}
$$
\n
$$
= -\underline{q} + k\underline{p}
$$
\n**c.**

Let *D* be a point on the side *BC* and let $\overrightarrow{BC} = p$, $\overrightarrow{BA} = q$ and $\overrightarrow{BD} = kp$, $k \in R$.

SOLUTIONS – continued

c. If
$$
\overrightarrow{AD} \perp \overrightarrow{BC}
$$
 then $\overrightarrow{AD} \cdot \overrightarrow{BC} = 0$.
\nFind *k* such that $(-q + kp).p = 0$
\nSo $-q.p + kp.p = 0$
\n
$$
k = \frac{q.p}{p.p}
$$
\n
$$
q.p = 36 \text{ (from part (a))}
$$
\n
$$
p.p = (-7i - 2j + 2k) \cdot (-7i - 2j + 2k)
$$
\n
$$
= 57
$$
\nSo $k = \frac{36}{57} = \frac{12}{19}$

d. Find the magnitude of \overrightarrow{AD} with $k = \frac{12}{19}$ for the shortest distance because we need $\overrightarrow{AD} \perp \overrightarrow{BC}$.

$$
\overrightarrow{AD} = -q + kp
$$
 with $k = \frac{12}{19}$

$$
\overrightarrow{AD} = 4\underline{i} + 3\underline{j} - \underline{k} + \frac{12}{19}(-7\underline{i} - 2\underline{j} + 2\underline{k})
$$

$$
= -\frac{8}{19} \dot{z} + \frac{33}{19} \dot{z} + \frac{5}{19} \dot{z}
$$

$$
\left| \overrightarrow{AD} \right| = \sqrt{\left(\frac{-8}{19} \right)^2 + \left(\frac{33}{19} \right)^2 + \left(\frac{5}{19} \right)^2}
$$

= $\sqrt{\frac{62}{19}}$

 $\left| \overrightarrow{AD} \right|$ = 1.81 to 2 decimal places **A1**

Question 4

Rate of mass going out = $\frac{x}{800}$ kg/litre × 5 litre/min

$$
= \frac{5x}{800} \text{ kg/min}
$$

$$
\frac{dx}{dt} = 0.5 - \frac{x}{160} = \frac{80 - x}{160}
$$

ii.
$$
a = 80
$$
 and $b = 160$ A1

iii.
$$
\frac{dt}{dx} = \frac{160}{80 - x}
$$
 M1 for inversion

$$
t = \int \frac{160}{80 - x} dx = -160 \log_e |80 - x| + c
$$
 M1 log recognition

When $t = 0$, $x = 10$ so $c = 160 \log_e 70$

$$
t = 160 \log_e \left(\frac{70}{80 - x} \right)
$$

$$
\frac{80 - x}{70} = e^{-\frac{t}{160}}
$$

$$
80 - 70e^{-\frac{t}{160}} = x
$$

iv. When
$$
t = 12
$$
, $x = 15.058$ kg

b. Rate of mass going in = $0.1 \text{ kg/litre} \times 5 \text{ litre/min}$ $= 0.5$ kg/min

Number of litres in the tank after *t* minutes $800 + 4t$ **M1** for volume $800 + At$ where *A* is a constant

Rate of mass going out $=$ $\frac{x}{800 + 4t}$ kg/litre × 1 litre/min

$$
= \frac{x}{800 + 4t} \text{ kg/min}
$$

$$
\frac{dx}{dt} = 0.5 - \frac{x}{800 + 4t}
$$

Question 5

- **a.** $a = 0i 9.8j$
	- $v = \int (0\underline{i} 9.8\underline{j})dt$ $= c \cdot \frac{i}{2} - (9.8t + d) \cdot \frac{j}{2}$ where *c* and *d* are constants. $\int (0 \underline{i} - 9.8 \underline{j}) dt$ **M1**

When $t = 0$, $y = 5i$ and so $c = 5$ and $d = 0$.

 $r = \int (5i - 9.8t j) dt$ $5t + e$ *i* $f = (4.9t^2 + f)$ *j* where *e* and *f* are constants. $= (5t + e)i - (4.9t^2 + f)$ y

When $t = 0$, $\underset{\sim}{a} = 0i + 40j$ and so $e = 0$ and $f = 40$.

$$
r = 5t\underline{i} + (40 - 4.9t^2)\underline{j}
$$
 as required. A1

b. The *j* component of $r = 5t$ *i* + $(40 - 4.9t^2)$ *j* is zero when the toy touches the ground.

$$
40 - 4.9t^2 = 0
$$
 so $t = \sqrt{\frac{40}{4.9}}$

It reaches the ground after 2.86 seconds. **A1** The horizontal distance reached is the i component: 5*t*

It travels 14.29 metres before reaching the ground. **A1**

c.
$$
x = 5t
$$
 so $t = \frac{x}{5}$ and $y = 40 - 4.9t^2$
A1

Substituting for *t* into *y* gives: $y = 40 - 4.9 \left(\frac{x}{5}\right)^2$

 $\therefore y = 40 - \frac{49x^2}{250}$ A1

d.
$$
y = 5i - 9.8ij
$$
 and $t = \sqrt{\frac{40}{4.9}}$ when the plane hits the ground. **M1**

The magnitude of the velocity at the point of impact with the ground is

$$
\sqrt{\left(25 + 9.8^2 \times \frac{40}{49}\right)}
$$
 which is $\sqrt{809}$.
A1

Magnitude of momentum $= |mv|$

$$
= 1.5 \times \sqrt{809}
$$

= 42.7 kg m/s to 3 significant figures. **A1**

$$
extbf{e.} \quad \tan{(\theta)} = \frac{40}{x}
$$

$$
\frac{d}{dt}(\tan(\theta)) = \frac{d}{dt} \left(\frac{40}{x}\right)
$$

So $\frac{d}{d\theta}(\tan(\theta)) \frac{d\theta}{dt} = \frac{d}{dx} \left(\frac{40}{x}\right) \frac{dx}{dt}$

$$
\therefore \frac{d\theta}{dt} = -\frac{40}{x^2 \sec^2(\theta)} \frac{dx}{dt}
$$

f. $\frac{dx}{dt} = 5$ as it is moving with a constant speed of 5 m/s.

x

$$
\frac{d\theta}{dt} = -\frac{200\cos^2(\theta)}{x^2}
$$

Now $\cos(\theta) = \frac{x}{\sqrt{x^2 + 1600}}$

When
$$
x = 10
$$
, $\cos(\theta) = \frac{1}{\sqrt{17}}$, $\sec^2(\theta) = 17$ and so $\frac{d\theta}{dt} = -\frac{2}{17}$