Specialist Mathematics Exam 2: SOLUTIONS

Multiple-choice Answers

1.	D	2.	В	3.	С	4.	Е	5.	А
6.	В	7.	D	8.	D	9.	А	10.	С
11.	В	12.	Е	13.	D	14.	С	15.	А
16.	D	17.	В	18.	Е	19.	В	20.	А
21.	В	22.	С						

Section 1: Multiple-choice Solutions

Question 1 Answer D

The range of $\cos^{-1}(3x)$ is $[0, \pi]$ and so the range of $y = a\cos^{-1}(3x) + \frac{\pi}{2}$ will be: $\left[a \times 0 + \frac{\pi}{2}, a \times \pi + \frac{\pi}{2}\right] = \left[\frac{\pi}{2}, (2a+1)\frac{\pi}{2}\right]$

Question 2 Answer B

The hyperbola is $\frac{(x-1)^2}{4} - \frac{y^2}{9} = 1$ which has centre at (1, 0). The vertices are 2 units either side of the centre, given by $\sqrt{4}$ in the equation. Hence they are 4 units apart.

Equations of asymptotes: $y = \pm \frac{3}{2}(x-1)$ which can be written as: 3x - 2y - 3 = 0 and -3x - 2y + 3 = 0.

Question 3 Answer C

$$z = \left[8\operatorname{cis}\left(-\frac{5\pi}{6}\right)\right]^{3}$$
$$= 512\operatorname{cis}\left(-\frac{5\pi}{2}\right)$$
$$= 512\operatorname{cis}\left(-\frac{\pi}{2}\right)$$

and so |z| and Arg (z) are 512 and $-\frac{\pi}{2}$

Question 4 Answer E

 $z^4 - 4z^3 + 8z^2 - 8z + 16 = 0, z \in C$

If there are any complex solutions then they will be in pairs as all of the coefficients are real. This eliminates alternatives A and C.

Graphing this polynomial onto the graphics calculator shows no x-intercepts and so there are 4 complex solutions.

Question 5 Answer A

 $a = \sqrt{2} \underline{i} - j + 7\underline{k}$ has a magnitude of $\sqrt{2 + 1 + 49} = \sqrt{52}$ or $2\sqrt{13}$.

$$\therefore \text{ unit vector} = \frac{1}{2\sqrt{13}} \left(\sqrt{2} \underbrace{i}_{\sim} - \underbrace{j}_{\sim} + 7 \underbrace{k}_{\sim} \right)$$

Question 6 Answer B

From the graph, the gradient is clearly positive and so alternatives D and E are incorrect. Differentiate the equation:

$$x^{2} - 4xy + 4y^{2} + x - 12y - 10 = 0$$
$$2x - \left(4y + 4x\frac{dy}{dx}\right) + 8y\frac{dy}{dx} + 1 - 12\frac{dy}{dx} = 0$$

Substituting x = 6 and y = 1 gives:

$$12 - \left(4 + 24\frac{dy}{dx}\right) + 8\frac{dy}{dx} + 1 - 12\frac{dy}{dx} = 0$$
$$9 = 28\frac{dy}{dx}$$
$$\frac{dy}{dx} = \frac{9}{28}$$

Question 7 Answer D

Let
$$z = x + iy$$
 in $|z| = |z + 4|$.
 $|x + iy| = |(x + 4) + iy|$
 $\sqrt{x^2 + y^2} = \sqrt{(x + 4)^2 + y^2}$
 $x^2 + y^2 = (x + 4)^2 + y^2$
 $x^2 + y^2 = x^2 + 8x + 16 + y^2$
 $8x = -16$ and so $x = -2$

Now $x = \operatorname{Re}(z)$ and so the answer is D.

Question 8 Answer D

 $\int_{0}^{\frac{\pi}{6}} \cos(3x)e^{\sin(3x)}dx$ Let $u = \sin(3x)$ so $\frac{du}{dx} = 3\cos(3x)$ If x = 0 then u = 0 and if $x = \frac{\pi}{6}$ then u = 1. $\frac{1}{3}\int_{0}^{1} e^{u}du$ is the result.

Question 9 Answer A

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = |\overrightarrow{BA}| |\overrightarrow{BC}| \cos \angle ABC$$

$$\overrightarrow{BA} = \overrightarrow{BO} + \overrightarrow{OA}$$

$$= -(\underbrace{i} - \underbrace{j} + \underbrace{k}) + 2\underbrace{i} + \underbrace{j} - \underbrace{k}$$

$$= \underbrace{i} + 2\underbrace{j} - 2\underbrace{k} \text{ and so } |\overrightarrow{BA}| = 3$$

$$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$$
$$= -(\underbrace{i}_{k} - \underbrace{j}_{k} + \underbrace{k}_{k}) + 3\underbrace{i}_{k} + \underbrace{j}_{k}$$
$$= 2\underbrace{i}_{k} + 2\underbrace{j}_{k} - \underbrace{k}_{k} \text{ and so } |\overrightarrow{BC}| = 3$$

 $\overrightarrow{BA} \cdot \overrightarrow{BC} = 2 + 4 + 2$ and therefore $\cos \angle ABC = \frac{8}{9}$

Question 10 Answer C

$$f(x+h) \approx f(x) + h \log_e(x) \text{ where}$$

$$f(1+0.1) \approx f(1) + 0.1 \times \ln(1)$$

$$= 3$$

$$f(1.1+0.1) \approx f(1.1) + 0.1 \times \ln(1.1)$$

$$= 3 + 0.009531$$

$$= 3.009531$$

$$f(1.2+0.1) \approx f(1.2) + 0.1 \times \ln(1.2)$$

$$= 3.009531 + 0.01823$$

$$= 3.02776$$

Answer: 3.0278

Question 11 Answer B

A volume of revolution around the *y*-axis is found by evaluating $\int \pi x^2 dy$. The lower limit is y = 1 and the upper is *e*.

$$y = e^{2x}$$

$$2x = \log_e(y)$$

$$x = \frac{1}{2}\log_e(y)$$

The volume formed by rotating the curve around the y-axis $=\frac{\pi}{4}\int_{1}^{e} (\log_{e}(y))^{2} dy$

The volume formed by rotating the line $x = \frac{1}{2}$ around the y-axis $= \pi \int_{1}^{e} \left(\frac{1}{2}\right)^{2} dy$

Required volume $\frac{\pi}{4} \int_{1}^{e} (1 - \log^2(y)) dy$

Question 12 Answer E

The graph of the function $y = \frac{x^2 + 9}{3x}$ has two asymptotes, one vertical (x = 0) and the other oblique $\left(y = \frac{x}{3}\right)$. It also has two turning points as can be seen from the graph of this function. The oblique asymptote with equation $y = \frac{x}{3}$ is also shown.

Question 13 Answer D

A point of inflection occurs where the second derivative is zero and the first derivative does **not** change sign. So, at the point of inflection $\frac{d^2y}{dx^2}$ changes sign and $\frac{dy}{dx}$ does not change sign.

Question 14 Answer C

A stationary point of inflection occurs at x = -1 since f'(x) = 0 and the derivative of f'(x) is zero as well at that point. f'(x) changes from negative to positive through zero at x = 2 and so there is a local minimum at this point for the graph of y = f(x). The rate of change of the gradient of f'(x) is zero at x = 1 (but the gradient of f(x) is about -4) and so there is a point of inflection at this point.

Question 15 Answer A

It should be noted that $\frac{dy}{dx}$ is

- positive if y > 0
- negative if y < 0
- infinite (shown by vertical steepness) as y approaches zero.

Only alternative A displays these properties.

Question 16 Answer D

The direction of motion at t = 2 is given by $\dot{r}(2)$.

$$\dot{r}(t) = (3 - 4t)\dot{t} + 6\dot{t} + \frac{1}{2\sqrt{t}}\dot{k}$$

Substituting t = 2: $-5\underline{i} + 6\underline{j} + \frac{1}{2\sqrt{2}}\underline{k}$ which is equivalent to $-5\underline{i} + 6\underline{j} + \frac{\sqrt{2}}{4}\underline{k}$.

Question 17 Answer B

Let the coordinates of *P* be (-a, -b) where *a* and *b* are both positive. Hence z = -a - bi. *Q* (by inspection) is -b + ai.

Testing each of the alternatives given:

A. iz = i(-a - bi) = b - ai which is not Q. However, it is the negative of what is required and so the answer is **B**.

Alternatively, rotation clockwise through a right angle is equivalent to multiplication by -i.

Question 18 Answer E

$$v = \int (5\sin(2t) - 1)dt$$

= $-\frac{5}{2}\cos(2t) - t + c$
At $t = 0, v = 0$ and so $c = 2.5$
 $v = -\frac{5}{2}\cos(2t) - t + 2.5$
At $t = 1, v = -2.5\cos(2) - 1 + 2.5$
Answer: $v = 2.54$

Question 19 Answer B

Acceleration down slope = $g \sin(\theta)$ where $\theta = \arctan\left(\frac{1}{5}\right)$. $\therefore a = \frac{g}{\sqrt{26}}$ is Jimmy's uniform acceleration. $u = 0, s = 250, a = \frac{g}{\sqrt{26}}$ and $v^2 = u^2 + 2as$ $\therefore v^2 = 0 + 2 \times \frac{g}{\sqrt{26}} \times 250$ and so v = 30.9995Momentum = mv $= 75 \times 30.9995$ $= 2325 \text{ kgms}^{-1}$

Question 20 Answer A

Let \underline{i} and \underline{j} be unit vectors acting east and north respectively.

The sum of the two forces are:

$$8\underline{j} + (-6\cos 60^\circ \underline{j} - 6\sin 60^\circ \underline{i})$$

 $= -6\sin 60^\circ \underline{i} + (8 - 6\cos 60^\circ)\underline{j}$
 $= -3\sqrt{3} \underline{i} + 5\underline{j}$
Magnitude $= \sqrt{(27 + 25)}$
 $= \sqrt{52}$
 $= 2\sqrt{13}$

Question 21 Answer B

$$-mg = \frac{mv^2}{1000} = ma$$

$$a = -\frac{1000g + v^2}{1000}$$

$$v\frac{dv}{dx} = -\frac{1000g + v^2}{1000}$$

$$\frac{dv}{dx} = -\frac{1000g + v^2}{1000v}$$

$$\frac{dx}{dv} = -\frac{1000v}{1000g + v^2}$$

$$x = \int -\frac{1000v}{1000g + v^2} dv$$

$$x = -500 \ln (1000g + v^2) + c$$
When $x = 0, v = 400$

$$x = 500 \ln \frac{9800 + 400^2}{1000g + v^2}$$

When v = 0, x = 1426 m

Question 22 Answer C

$$s = -60, a = -9.8, u = 20, t =$$

$$s = ut + \frac{1}{2}at^{2}$$

$$-60 = 20t - 4.9t^{2}$$

$$4.9t^{2} - 20t - 60 = 0$$

Solving this quadratic using TI-83 QUAD PRGM: t = -2.01, 6.09Ignoring the negative solution, t = 6.09 seconds.

?

Specialist Mathematics Exam 2: SOLUTIONS

Section 2

Question 1

a.
$$-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i = 1 \operatorname{cis}\left(\frac{3\pi}{4}\right)$$

Apply de Moivre's theorem:

$$z^{2} = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$

$$r^{2}\operatorname{cis}(2\theta) = 1\operatorname{cis}\left(\frac{3\pi}{4}\right)$$

$$r^{2} = 1 \therefore r = 1, u = 1\operatorname{cis}\left(\frac{3\pi}{4}\right)$$

$$2\theta = \frac{3\pi}{4} + 2k\pi, k = 0, 1$$

$$u = 1\operatorname{cis}\left(\frac{3\pi}{8}\right) \text{ and } v = 1\operatorname{cis}\left(-\frac{5\pi}{8}\right)$$

M1

A2

A2 for *u* and *v* in correct positions A1 for *u* and *v* swapped

Region T is the intersection of the inside of the circle centre (0, 0) and radius 2 with the perpendicular bisector of the line segment joining u and v.

A1 perpendicular bisector A1 inside of the circle

M1

A1 intersection of the two clearly labelled.

d. For what values of n is u^n purely imaginary?

$$u^{n} = \left[1 \operatorname{cis}\left(\frac{3\pi}{8}\right)\right]^{n}$$
$$= 1 \operatorname{cis}\left(\frac{3n\pi}{8}\right)$$

If this is purely imaginary then $\cos\left(\frac{3n\pi}{8}\right) = 0$

$$\frac{3n\pi}{8} = \frac{(2k-1)\pi}{2} \text{ where } k \in \mathbb{Z} \text{ or alternatively}$$

$$\frac{3n\pi}{8} = \frac{(2k+1)\pi}{2}$$
M1 for equating angle to $\frac{\text{odd } \pi}{2}$

$$\frac{4}{2}(2k-1) = \frac{4}{2} + \frac{1}{2} + \frac{1}{2}$$

Hence $n = \frac{4}{3}(2k-1)$ where $k \in \mathbb{Z}$ or $n = \frac{4}{3}(2k+1)$ for any multiple of $\frac{\pi}{2}$ A1

Question 2

a.
$$1 + \log_e x = 0$$

 $\log_e x = -1$ so $x = e^{-1}$
Coordinates of $A = (e^{-1}, 0)$
A1 for $(e^{-1}, 0)$
b. i. $f'(x) = \frac{x(\frac{1}{x}) - 1(1 + \log_e(x))}{x^2}$
 $= \frac{1 - 1 - \log_e(x)}{x^2}$
 $= \frac{1 - 1 - \log_e(x)}{x^2}$
ii. $f'(x) = 0$
 $\therefore \frac{-\log_e(x)}{x^2} = 0$
 $\log_e(x) = 0$
When $x = 1, y = 1$
Coordinates of $B = (1, 1)$
A1 for $(1, 1)$
c. $f''(x) = \frac{x^2(-\frac{1}{x}) + 2x\log_e(x)}{x^4}$
 $= \frac{-x + 2x\log_e(x)}{x^4}$
 $= 0$ if $x = e^{0.5}$
Coordinates of $C = (e^{0.5}, 1.5e^{-0.5})$
d. $\sqrt{e} \approx 1.65$

$$f''(1.6) = -0.0146$$

$$f''(1.7) = 0.0125$$

f''(x) changes sign so the concavity changes, hence the point of inflection. A1 It should be noted that the first derivative does **not** change sign at x = 1.65.

Equate the first derivative to the gradient between the points (0, 0) and $\left(\frac{1 + \log_e(x)}{x}\right)x$. e.

$$-\frac{\log_{e}(x)}{x^{2}} = \frac{\frac{1 + \log_{e}(x)}{x} - 0}{\frac{x}{x - 0}}$$
$$-\frac{\log_{e}(x)}{x^{2}} = \frac{1 + \log_{e}(x)}{x^{2}}$$
$$-\log_{e}(x) = 1 + \log_{e}(x)$$
$$-2\log_{e}(x) = 1 \text{ and so } \log_{e}(x) = -\frac{1}{2}$$
$$\therefore x = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}$$
$$\frac{\frac{1}{\sqrt{e}}}{\int_{0}^{\frac{1}{\sqrt{e}}}} \left(\frac{e}{2}x\right) dx - \int_{\frac{1}{e}}^{\frac{1}{\sqrt{e}}} \left(\frac{1 + \log_{e}(x)}{x}\right) dx$$

(This first integral represents the area under the tangent which passes through the origin.) M1 the difference of two integrals A1 correct limits

$$= \left[\frac{ex^2}{4}\right]_0^{\frac{1}{\sqrt{e}}} - \frac{1}{2}\left[(1 + \log_e(x))^2\right]_{\frac{1}{e}}^{\frac{1}{\sqrt{e}}}$$

= $0.25 - \frac{1}{2}\left[(1 - 0.5)^2 - (1 - 1)^2\right]$
= $\frac{1}{8}$
A1 (correct anti-derivative of the $\frac{1 + \log_e(x)}{x}$ function)

~

Question 3

f.

a.
$$\overrightarrow{OA} = -i + 3j + 2k$$
, $\overrightarrow{OB} = 3i + 6j + k$ and $\overrightarrow{OC} = -4i + 4j + 3k$
 $\overrightarrow{BC} \cdot \overrightarrow{BA} = (\overrightarrow{BO} + \overrightarrow{OC}) \cdot (\overrightarrow{BO} + \overrightarrow{OA})$ M1 dot product
 $= (-3i - 6j - k - 4i + 4j + 3k) \cdot (-3i - 6j - k - i + 3j + 2k)$
 $= (-7i - 2j + 2k) \cdot (-4i - 3j + k)$ A1 for these vectors
 $= 28 + 6 + 2$
 $= 36$
b. $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$ A1
 $= -q + kp$

Let *D* be a point on the side *BC* and let $\overrightarrow{BC} = p$, $\overrightarrow{BA} = q$ and $\overrightarrow{BD} = kp$, $k \in R$.

SOLUTIONS – continued

c. If
$$\overrightarrow{AD} \perp \overrightarrow{BC}$$
 then $\overrightarrow{AD} \cdot \overrightarrow{BC} = 0$.
Find k such that $(-q + kp) \cdot p = 0$
So $-q \cdot p + kp \cdot p = 0$
 $k = \frac{q \cdot p}{p \cdot p}$
 $q \cdot p = 36$ (from part (a))
 $p \cdot p = (-7i - 2j + 2k) \cdot (-7i - 2j + 2k)$
 $= 57$
So $k = \frac{36}{57} = \frac{12}{19}$ A1

d. Find the magnitude of \overrightarrow{AD} with $k = \frac{12}{19}$ for the shortest distance because we need $\overrightarrow{AD} \perp \overrightarrow{BC}$.

$$\overrightarrow{AD} = -\overrightarrow{q} + k\overrightarrow{p} \text{ with } k = \frac{12}{19}$$
 M1

$$\overrightarrow{AD} = 4\underline{i} + 3\underline{j} - \underline{k} + \frac{12}{19} \left(-7\underline{i} - 2\underline{j} + 2\underline{k} \right)$$
 M1

$$= -\frac{8}{19}\underbrace{i}_{\sim} + \frac{33}{19}\underbrace{j}_{\sim} + \frac{5}{19}\underbrace{k}_{\sim}$$
 A1

$$\left|\overrightarrow{AD}\right| = \sqrt{\left(\frac{-8}{19}\right)^2 + \left(\frac{33}{19}\right)^2 + \left(\frac{5}{19}\right)^2}$$
$$= \sqrt{\frac{62}{19}}$$

 $\left| \overrightarrow{AD} \right| = 1.81$ to 2 decimal places

A1

Question 4

a.	i.	Rate of mass going in = $0.1 \text{ kg/litre} \times 5 \text{ litre/min}$			
		= 0.5 kg/min	A1		

Rate of mass going out = $\frac{x}{800}$ kg/litre × 5 litre/min

$$=\frac{5x}{800} \text{ kg/min}$$
A1

$$\frac{dx}{dt} = 0.5 - \frac{x}{160} = \frac{80 - x}{160}$$

ii.
$$a = 80 \text{ and } b = 160$$
 A1

iii.
$$\frac{dt}{dx} = \frac{160}{80 - x}$$
 M1 for inversion

$$t = \int \frac{160}{80 - x} dx = -160 \log_e |80 - x| + c$$
 M1 log recognition

When t = 0, x = 10 so $c = 160 \log_e 70$

$$t = 160 \log_e \left(\frac{70}{80 - x}\right)$$

$$\frac{80 - x}{70} = e^{-\frac{t}{160}}$$
A1

$$80 - 70e^{-\frac{t}{160}} = x$$
 A1

iv. When
$$t = 12$$
, $x = 15.058$ kg A1

b. Rate of mass going in = $0.1 \text{ kg/litre} \times 5 \text{ litre/min}$ = 0.5 kg/min

Number of litres in the tank after t minutes 800 + 4tM1 for volume 800 + AtRate of mass going out = $\frac{x}{800 + 4t}$ kg/litre ×1 litre/minwhere A is a constant

$$=\frac{x}{800+4t}$$
 kg/min

$$\frac{dx}{dt} = 0.5 - \frac{x}{800 + 4t}$$
 A1

Question 5

- $a. \qquad a = 0i 9.8j$
 - $\underbrace{v}_{\tilde{v}} = \int (0\underline{i}_{\tilde{v}} 9.8\underline{j}) dt$ = $c\underline{i}_{\tilde{v}} - (9.8t + d)\underline{j}$ where c and d are constants. M1

When t = 0, v = 5i and so c = 5 and d = 0.

 $\begin{aligned} r &= \int \left(5\underline{i} - 9.8\underline{t}\underline{j}\right) dt \\ &= (5t+e)\underline{i} - (4.9t^2 + f)\underline{j} \text{ where } e \text{ and } f \text{ are constants.} \end{aligned}$

When t = 0, a = 0i + 40j and so e = 0 and f = 40.

$$r = 5ti + (40 - 4.9t^2)j$$
 as required. A1

b. The *j* component of $r = 5ti + (40 - 4.9t^2)j$ is zero when the toy touches the ground.

$$40 - 4.9t^2 = 0$$
 so $t = \sqrt{\frac{40}{4.9}}$

It reaches the ground after 2.86 seconds.A1The horizontal distance reached is the $i_{\tilde{z}}$ component: 5t

It travels 14.29 metres before reaching the ground. A1

c.
$$x = 5t$$
 so $t = \frac{x}{5}$ and $y = 40 - 4.9t^2$ A1

Substituting for t into y gives: $y = 40 - 4.9 \left(\frac{x}{5}\right)^2$

 $\therefore y = 40 - \frac{49x^2}{250}$ A1

d.
$$v = 5i - 9.8tj$$
 and $t = \sqrt{\frac{40}{4.9}}$ when the plane hits the ground. **M1**

The magnitude of the velocity at the point of impact with the ground is

$$\sqrt{\left(25+9.8^2 \times \frac{40}{49}\right)}$$
 which is $\sqrt{809}$. A1

Magnitude of momentum = |mv|

e.

$$= 1.5 \times \sqrt{809}$$

= 42.7 kg m/s to 3 significant figures. A1

$$\tan\left(\theta\right) = \frac{40}{x}$$

$$\frac{d}{dt}(\tan{(\theta)}) = \frac{d}{dt}\left(\frac{40}{x}\right)$$
So $\frac{d}{d\theta}(\tan{(\theta)})\frac{d\theta}{dt} = \frac{d}{dx}\left(\frac{40}{x}\right)\frac{dx}{dt}$
M1
$$\therefore \frac{d\theta}{dt} = -\frac{40}{x^2\sec^2{(\theta)}}\frac{dx}{dt}$$
A1

f. $\frac{dx}{dt} = 5$ as it is moving with a constant speed of 5 m/s.

$$\frac{d\theta}{dt} = -\frac{200\cos^2(\theta)}{x^2}$$
Now $\cos(\theta) = \frac{x}{\sqrt{x^2 + 1600}}$
M1

When
$$x = 10$$
, $\cos(\theta) = \frac{1}{\sqrt{17}}$, $\sec^2(\theta) = 17$ and so $\frac{d\theta}{dt} = -\frac{2}{17}$ A1