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VCE Specialist Mathematics Units 3 & 4 Trial Examination 1 Suggested Solutions

Question 1

xy—y2—4=0

When x = -5, we obtain a quadratic equation in y, i.e. — 5y — y2 -4=0.

Solve — 5y — y2 —4 =0 or equivalent for y. M1
Hence y =-4 or -1, butas y > -4 we obtain y =—1. Al
Using implicit differentiation, we obtain y + x@—} - 2y§—) =0. M1
X X
Substituting x =-5 and y=-1 to find g—i, we obtain — 1 -5 »
Hence dy _ —=. Al
dx 3

Question 2
dy _ cos(2x)e Y
dx

y= jcos (2x)e_sm(2x)dx

. du _
Let u = sin(2x), so — =2cos(2x). M1
dx

-1 e “du Al

Y72
1 1 —sin(2x)
Hencey:—ie +cory:—§e +c Al
We now apply the condition y = 1 when x = 0 to find the value of c using either of the above.
1:—%+c, SO c:%.
_3 1 —sin2x)

Hence y = 5 2e . Al
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Question 3
N 1 A
2.))
SIS
4
/////(Oﬁa
1
8
! ! ! ! ! ! ! ! ! ! ! ! ! > X
9 8 7 6 -5 4 -3 / 2 - 9 1 2 3 4
horizontal asymptote at y = 0
Correct shape (“camel’s hump”) and horizontal asymptote at y = 0 is shown. Al
Maximum stationary point at (—2, %J is shown. Al
y-intercept at (O, %) is shown. Al
0
b. The area between x =—4 and x =0 is given by J. —2—-—@——-— Al
Lt 4x + 8

0

:j__clz__
4u+2f+4

0

2
J‘ —_— 2dx
L +2)7+2 Al

L (22)]

N =

2 4
1 -1 -1
=§[tan (1) —tan (-1)]
IfTm &
== -4 -
2[4 4}
= % square units Al
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Question 4

a.

4
N S

=

025N, &— 4kg

8 kg

dg

All forces are correctly shown.

Resolving horizontally for the 8 kg mass, 20 — 7' = 8a
Resolving vertically for the 4 kg mass, N, = 4g

Resolving horizontally for the 4 kg mass, T'— 0.25N, = 4a
Substituting (2) into (3) gives T— g = 4a

Adding (1) and (4) gives 20 — g = 12a

8

20 -
Th =—==,
us a B

Question 5

a.

tan(15°) = tan(45° - 30°)
_ tan(45°) — tan(30°)

8¢

)
)
3)
4

tan(x) — tan(y)

= 1 t: - =
1 + tan(45°) @an(30°) (usmg an(x =)

- L

3
1+(1)(%)

-1

5&

o)
+
—_

P

&
7

-1
= X

3+1

_4-2.3
2

=2_-.3

Hence if tan(15°)=a+b./3, a=2and b=—1.

2

-1

)

1 + tan(x)tan(y

Al
Al

Al

Al

M1

Al

Al
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VCE Specialist Mathematics Units 3 & 4 Trial Examination 1 Suggested Solutions

b. LHS = _cos(24)
1 + sin(24)
_ cos’(A) —sin°(A) M1
cos’(A) + sin’(A) + 2sin(A)cos(A)
_ (cos(A) —sin(A))(cos(A) + sin(A)) Al
(cos(A) + sin(A))*
_ COs(A) —sin(A) Al
cos(A) + sin(A)
= RHS
Question 6
yl\

X
When x=0, y=4 and when x =2, y=0.
Since y =4 —x2, x'=4 —y over the interval x € [0, 2]. M1
4 4
The volume is given by n.‘- xzdy = nJ. (4 -y)dy Al
0 0
- n[4y - X-T Al
2 1o
=n[(16-8)-(0-0)]
= 87 cubic units Al
Question 7
a. The parametric equations are:
x =cos” (1) (1)
y = 4sin’(¢) 2)
Y = sin’(1) 3)
4
(1)+(3)givesx+ﬁ:1. M1
Hence y =4 —4x, or equivalent. Al

Copyright © 2007 Neap TEVSMUS4EX1_SS_07.FM 5



VCE Specialist Mathematics Units 3 & 4 Trial Examination 1 Suggested Solutions

b. The path is a straight line with equation y=4 —4x for 0<x < 1.

yl\
0,4) 1
t >» X
o| 1,0
Straight line through (0, 4) and (1, 0). Al
Line ends at the intercepts. Al
Question 8

P(i)=i+bi+1+i

=(b+1)i
Given that P(i) =0, we obtain b =-1. Al

b. Lettherootsofzz—z+(l+i):O be a and 3.

(z—a)(z—ﬁ)=zz—(a+ﬂ)z+aﬂ M1
By equating coefficients, « + f =1 and aff =1 +i. Al
From a., @ =i, and from a + =1 we obtain f=1-1. Al
Question 9
2 4
r - + 1 (by division) Al
2 2
x' -4 x -4

Using partial fractions on gives M1

X -4

4 A B
= +
Y4 x=2 x+2
4=A(x+2)+B(x-2)
When x=2,A=1 and when x=-2, B=—1.

2
Hence | ——dx = (L— 1 +1)dx. Al
Y _4 x—-2 x+2
(L—Lﬂ)dx:logex—z Fx Al
x—2 x+2 x+2
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