••			
••••	 ••••		

Online & home tutors Registered business name: mathlinE ABN: 35 631 847 853

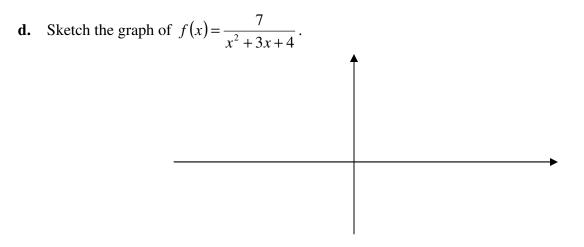
Specialist Mathematics

2008

Trial Examination I

Instructions

Answer all questions. Do not use calculators.


A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

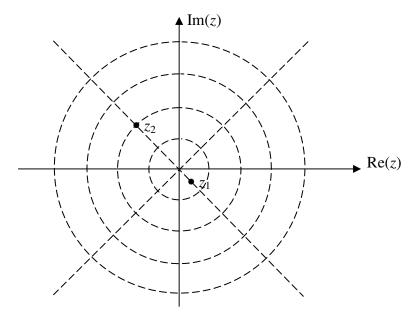
Question 1 Consider the graph of $f(x) = \frac{7}{x^2 + 3x + 4}$.

a. State the coordinates of the *y*-intercept.

b. Find the coordinates of the stationary point.

c. Write down the equation of the asymptote.

1 + 2 + 1 + 1 = 5 marks


Question 2

- **a.** Express $\cos(2\sin^{-1} x)$ as a polynomial function of *x*.
- **b.** Hence sketch the graph of $\cos(2\sin^{-1} x)$.

2 + 2 = 4 marks

Question 3 z_1 and z_2 are shown in the following argand diagram. Plot $z_3 = z_1 z_2$ and $z_4 = \frac{z_2}{z_1}$ on the same

argand diagram.

2 + 2 = 4 marks

Question 4

a. Given that $z = \frac{1}{\sqrt{2}}(1-i)$ is a solution to $z^2 + i = 0$, find the other solution to the equation.

b. Hence or otherwise find all the solutions to $z^8 - 1 = 0$. Express the solutions in x + yi form.

Question 5

a. Let F(x) be an anti-derivative of $f(x) = \frac{3}{2x^2 + 6}$ such that F(3) = 0. Find F(x)

b. Find
$$\frac{d}{dx} \left(\sin^{-1} \sqrt{1 - x^2} \right)$$
 and state the domain.

2 + 3 = 5 marks

Question 6 a. Find $\frac{dy}{dx}$, given $4x^2 + y^2 = 16$.

c.

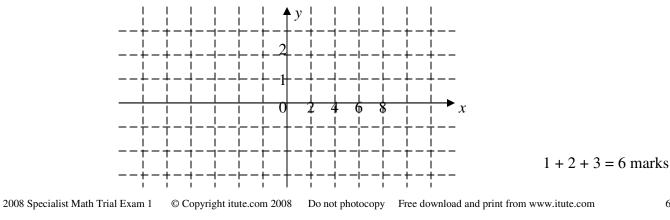
b. Sketch the slope field of the differential equation $\frac{dy}{dx} = -\frac{4x}{y}$ at the points shown in the grid below.

		:	:	:		:	:	-	.,	: :	: :		:		: :	
									<i>y</i>							
								3								
								2								
							•									
							•	1			•					
								0								x
		- 1	3		2		1		0		1		2		3	
								-1								
							•	····-±			•					
																1
								-2								
		[[
								-3								
		:	:	:		:	:				: :				: :	
01 (1	Sketch a solution curve to the differential equation $\frac{dy}{dx} = -\frac{4x}{y}$ on the grid in part b .															
Sketch a	i solut	tion ci	urve t	o the	differ	ential	equa	t10n -	$\frac{\cdot}{dx} = -$		on the	e grid	ın pa	rt D.		
ax y																

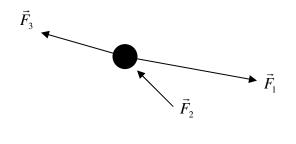
2 + 2 + 1 = 5 marks

Question 7 Consider vector 3i + 4j - 12k where *i*, *j* and *k* are orthogonal unit vectors.

- Find a unit vector in the direction of vector 3i + 4j 12k. a.
- Find $\cos\theta$ where θ is the angle between vector 3i + 4j 12k and unit vector k. b.


Find the value(s) of p such that vector $p\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and vector $3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}$ are independent. c.

1 + 1 + 1 = 3 marks


Question 8 A particle moves so that its position at time t, $0 \le t < \frac{\pi}{2}$, is given by $\mathbf{r} = 2 \sec(t)\mathbf{i} + \tan(t)\mathbf{j}$.

- Find the initial position of the particle. a.
- Find the velocity v of the particle at time t. b.

Sketch the path of the particle. Hint: Find the cartesian equation of the path first. c.

Question 9 A 0.5-kg particle is acted on by three forces: $\vec{F}_1 = 3i + 2j - k$, $\vec{F}_2 = -i + 3j + 2k$ and \vec{F}_3 . The acceleration of the particle is 4i + 2k. Forces are in newtons, and acceleration is in ms⁻².

a. Find \vec{F}_3 .

b. Find the exact distance travelled by the particle in the first second if it is initially at rest.

2 + 2 = 4 marks

End of Exam 1