The Mathematical Association of Victoria SPECIALIST MATHEMATICS 2008 Trial written examination 2 – Multiple Choice Solutions

SECTION 1

Answers:

1. B	2. A	3. E	4. C	5. A
6. D	7. B	8. B	9. C	10. A
11. C	12. D	13. B	14. D	15. E
16. E	17. C	18. A	19. B	20. E
21. D	22. D			

Worked Solutions: Question 1

Vertical asymptotes occur where $2x^2 + 3x - 5 = 0$

$$(2x+5)(x-1) = 0$$

x = $-\frac{5}{2}$, x = 1

Horizontal asymptote at y = 0

Question 2

Graph is a hyperbola of the form $\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$ Asymptotes intersect at (-1, 0) $\Rightarrow h = -1, k = 0$ Minimum turning point at (-1, 2) $\Rightarrow a^2 = 1, b^2 = 4$ Equation of hyperbola is $\frac{(y-0)^2}{4} - \frac{(x+1)^2}{1} = 1$ $\frac{y^2}{4} - (x+1)^2 = 1$ Answer B

Answer A

Answer E

Question 3

$$\frac{\sin(3x)}{\sin(x)} + \frac{\cos(3x)}{\cos(x)}$$
$$= \frac{\sin(3x)\cos(x) + \cos(3x)\sin(x)}{\sin(x)\cos(x)}$$
$$= \frac{\sin(3x+x)}{\sin(x)\cos(x)}$$
$$= \frac{2\sin(4x)}{2\sin(x)\cos(x)}$$
$$= \frac{2 \times 2\sin(2x)\cos(2x)}{\sin(2x)}$$

 $=4\cos(2x)$

Question 4

 $f(x) = \sin^{-1}(x)$ has endpoints $\left(-1, -\frac{\pi}{2}\right)$ and $\left(1, \frac{\pi}{2}\right)$

Answer C

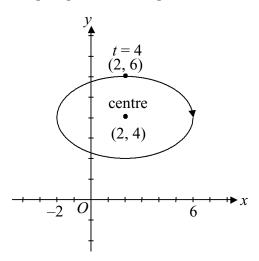
 $f(x) = \sin^{-1}(a(x-b))$ has been dilated by a factor of $\frac{1}{a}$ parallel to the *x*-axis then translated *b* units right.

The endpoint coordinates will be $\left(b - \frac{1}{a}, -\frac{\pi}{2}\right)$ and $\left(b + \frac{1}{a}, \frac{\pi}{2}\right)$

Hence $\left(\frac{1}{a}+b, \frac{\pi}{2}\right)$

Answer A

Graphing the curve in parametric mode on calculator will show alternatives B, C, D and E are true.



Finding the Cartesian equation

 $x = 2 + 4\sin(\pi t) \qquad y = 4 + 2\cos(\pi t)$ $\Rightarrow \frac{x-2}{4} = \sin(\pi t) \dots (1) \qquad \Rightarrow \frac{y-4}{2} = \cos(\pi t) \dots (2)$ $\left(\frac{x-2}{4}\right)^2 + \left(\frac{y-4}{2}\right)^2 = \sin^2(\pi t) + \cos^2(\pi t)$ $\frac{(x-2)^2}{16} + \frac{(y-4)^2}{4} = 1$

The curve follows an elliptical path with centre (2, 4)

Question 6

Let z = x + yi $3z - \overline{z} = 12 - 4i$ $\Rightarrow 3(x + yi) - (x - yi) = 12 - 4i$ 3x + 3yi - x + yi = 12 - 4i 2x + 4yi = 12 - 4i 2x = 12, 4y = -4 $\therefore x = 6, y = -1$ z = 6 - i **Answer D**

Since 2 - i and 1 - i are solutions of the quadratic equation

$$(z - (2 - i))(z - (1 - i)) \equiv z^{2} + az + b$$

Expanding:
$$z^{2} - (1 - i)z - (2 - i)z + (2 - i)(1 - i) \equiv z^{2} + az + b$$

$$z^{2} - (3 - 2i)z + (2 - 3i - 1) \equiv z^{2} + az + b$$

Equating coefficients of powers of z:
$$a = -(3 - 2i), b = 1 - 3i$$

$$a = -3 + 2i$$

Question 8

$$|2 - z| = 4$$

$$|2 + 0i - (x + yi)| = 4$$

$$\sqrt{(2 - x)^{2} + (0 - y)^{2}} = 4$$

$$(x - 2)^{2} + y^{2} = 16$$

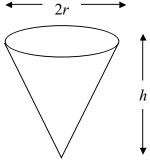
Circle with centre (2, 0) and radius 4

Answer B

Answer B

Answer C

Question 9



$$V = \frac{1}{3}\pi r^{2}h \qquad h = 2r \text{ (given)}$$

$$V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^{2}h \qquad r = \frac{h}{2}$$

$$V = \frac{1}{12}\pi h^{3}$$

$$\frac{dV}{dh} = \frac{1}{4}\pi h^{2}$$

Applying the chain rule

$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt} \qquad \qquad \frac{dV}{dt} = 10\,000 \text{ cm}^3/\text{min}$$

$$10\,000 = \frac{1}{4}\pi h^2 \times \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{40\,000}{\pi h^2}$$

$$\frac{dh}{dt} = \frac{40\,000}{\pi \times 50^2}$$

$$\frac{dh}{dt} = \frac{16}{\pi} \text{ cm/min}$$

Question 10

 $\int \sin^2(x) \cos^3(x) dx$ $= \int \sin^2(x) \cos^2(x) \cos(x) dx$

 $= \int \sin^2(x)(1 - \sin^2(x))\cos(x)dx$

Let $u = \sin(x)$ $\frac{du}{dx} = \cos\left(x\right)$ $du = \cos(x)dx$

 $= \int u^2 (1 - u^2) du$ $= \int (u^2 - u^4) du$

Answer A

6

Question 11

Finding equation of inverse $f^{-1}(x)$

$$x = 2^{y} - 1$$

$$x + 1 = 2^{y}$$

$$y = \log_{2} (x + 1)$$

$$f^{-1}(x) = \log_{2} (x + 1)$$

Area enclosed by curves

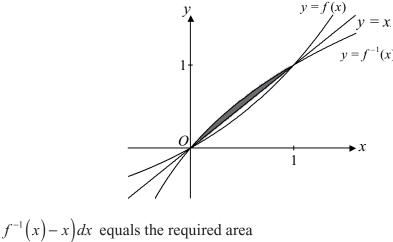
$$\int_{0}^{1} \left(f^{-1}(x) - f(x) \right) dx$$

=
$$\int_{0}^{1} \left(\log_{2} \left(x + 1 \right) - \left(2^{x} - 1 \right) \right) dx$$

=
$$\int_{0}^{1} \left(\log_{2} \left(x + 1 \right) - 2^{x} + 1 \right) dx$$

A is true

The graphs are inverses of each other therefore the required area is symmetrical about the line y = x.



Twice $\int_{0}^{1} (f^{-1}(x) - x) dx$ equals the required area = $2 \int_{0}^{1} (\log_2(x+1) - x) dx$

B is true

Twice $\int_{0}^{1} (x - f(x)) dx$ equals the required area = $2 \int_{0}^{1} (x - (2^{x} - 1)) dx$ = $2 \int_{0}^{1} (x - 2^{x} + 1) dx$

However C is $2\int_{0}^{1} (x-2^{x}-1) dx$, so this is false

Answer C

(Area of square side length 1) – twice $\int_{0}^{1} f(x) dx$ equals the required area

$$= (1 \times 1) - 2 \int_{0}^{1} (2^{x} - 1) dx$$
$$= 1 - 2 \int_{0}^{1} (2^{x} - 1) dx$$

D is true

Twice $\int_{0}^{1} f^{-1}(x) dx$ – (area of square side length 1) equals the required area.

$$= 2 \int_{0}^{1} f^{-1}(x) dx - (1 \times 1)$$

= $2 \int_{0}^{1} (\log_2(x+1)) dx - 1$
E is true

Question 12

 $\frac{dy}{dx} = \sqrt{x^4 + 1}$ $y = \int \sqrt{x^4 + 1} \, dx$ Let y = f(x) + c(1) where $f'(x) = \sqrt{x^4 + 1}$ When x = 1, y = 4 4 = f(1) + c c = f(1) + 4(2) Substitute (2) into (1) y = f(x) - f(1) + 4When x = 3, y = f(3) - f(1) + 4 $y = \left[f(t) \right]^3 + 4$

$$y = \left\lfloor f(t) \right\rfloor_{1} + 4$$
$$y = \int_{1}^{3} \left(\sqrt{t^{4} + 1} \right) dt + 4$$

Answer D

Let f(x, y) = x - y $y_{n+1} = y_n + hf(x_n, y_n)$ Given $x_0 = 2, y_0 = 0, h = 0.5$ $y_1 = y_0 + 0.5f(x_0, y_0)$ $y_1 = 0 + 0.5 \times 2 = 1$ $y_2 = y_1 + 0.5f(x_1, y_1)$ $y_2 = 1 + 0.5 \times 1.5 = 1.75$ $x_1 = 2.5, f(x_1, y_1) = x_1 - y_1 = 2.5 - 1 = 1.5$ $y_3 = y_2 + 0.5f(x_2, y_2)$ $x_2 = 3, f(x_2, y_2) = x_2 - y_2 = 3 - 1.75 = 1.25$ $y_3 = 1.75 + 0.5 \times 1.25 = 2.375$

 $y_4 = y_3 + 0.5f(x_3, y_3)$ $y_4 = 2.375 + 0.5 \times 1.125 = 2.9375$ $f(x_3, y_3) = x_3 - y_3 = 3.5 - 2.375 = 1.125$

The gradients are equal in a horizontal direction, therefore $\frac{dy}{dx} = f(y)$. Eliminate alternatives A and B.

The field diagram shows a small positive slope at y = 2.

At
$$y = 2$$
, $\frac{dy}{dx} = \cos(y) = \cos(2) = -0.42$

This slope is negative, however in the field diagram the slope is positive when y = 2. Eliminate E.

At
$$y = 2$$
, $\frac{dy}{dx} = y = 2$

A slope of 2 is much steeper than this field diagram shows when y = 2.

Eliminate C.

At y = 2, $\frac{dy}{dx} = \frac{1}{v^2} = \frac{1}{4}$ This is the only possible option.

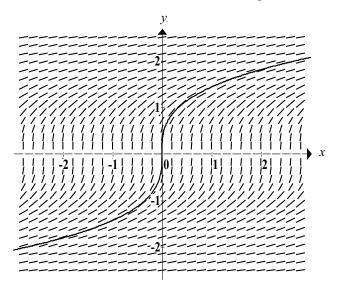
The slope in the field diagram looks like the gradient is $\frac{1}{4}$ when y = 2.

By solving the differential equation it can be seen that the solution fits the slope field.

$$\frac{dy}{dx} = \frac{1}{y^2}$$
$$\frac{dy}{dx} = y^2$$
$$x = \int y^2 dy + c$$
$$x = \frac{1}{3}y^3 + c$$
Let $c =$
$$y = \sqrt[3]{(3x)}$$

This curve is sketched on the field diagram below.

0



$$a \cdot b = \left| \begin{array}{c} a \\ \end{array} \right| \left| \begin{array}{c} b \\ b \\ \end{array} \right| \cos(\theta) \\ (2i + j + 2k) (i + mj - k) = \left| 2i + j + 2k \\ \end{array} \right| \left| \begin{array}{c} i + mj - k \\ \end{array} \right| \cos(\theta) \\ 2 + m - 2 = \sqrt{9} \times \sqrt{(m^2 + 2)} \cos(\theta) \\ m = 3\sqrt{(m^2 + 2)} \cos(\theta) \\ \theta = \cos^{-1} \left(\frac{m}{3\sqrt{(m^2 + 2)}} \right) \end{array}$$

Question 16

The dot product of perpendicular vectors is zero.

$$p \cdot e = \left(\cos(t)i + \sin(t)j - k\right) \left(\sin(t)i - \cos(t)j + k\right)$$

$$p \cdot e = \cos(t)\sin(t) - \sin(t)\cos(t) - 1$$

$$p \cdot e = -1$$

Vectors p and e are not perpendicular.

Question 17

Let T be the time when the particle's velocity changes from negative to positive.

Total area under graph (disregarding sign) is 305. $8 \times 15 + \frac{1}{2}(T-8) \times 15 + \frac{1}{2}(16-T) \times 25 + 4 \times 25 = 305$ 120 + 7.5T - 60 + 200 - 12.5T + 100 = 305T = 11

The particle changes direction after 11 seconds.

Distance travelled with negative velocity = $8 \times 15 + \frac{1}{2}(11 - 8) \times 15 = 142.5$ metres Distance travelled with positive velocity = $\frac{1}{2}(16 - 11) \times 25 + 4 \times 25 = 162.5$ metres The particle is 162.5 - 142.5 = 20 metres from its starting position after 20 seconds. Answer E

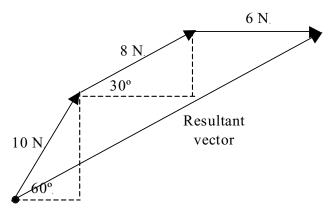
Answer C

 $a = \frac{dv}{dt} = \frac{1}{2v+1}$ $\frac{dt}{dv} = 2v+1$ $t = \int (2v+1)dv$ $t = v^2 + v$ When $t = 0, v = 0 \Rightarrow c = 0$ $t = v^2 + v$ When $t = 2, \quad v^2 + v = 2$ $v^2 + v - 2 = 0$ (v+2)(v-1) = 0 $v = 1, v \ge 0$

Velocity is 1 m/s after 2 seconds

Question 19

Adding vectors head to tail



Horizontal component of resultant vector

$$= 10\cos(60^\circ) + 8\cos(30^\circ) + 6$$

$$= 5 + 4\sqrt{3} + 6$$

$$= 11 + 4\sqrt{3}$$

Vertical component of resultant vector

$$=10\sin(60^{\circ}) + 8\sin(30^{\circ}) \\ = 5\sqrt{3} + 4$$

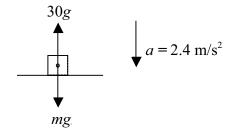
Magnitude of resultant vector

$$= \sqrt{(11+4\sqrt{3})^{2} + (5\sqrt{3}+4)^{2}}$$

= 21.9 newtons

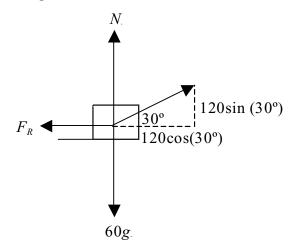
Answer A

Draw diagram showing the forces acting. Lift is accelerating downwards.



mg - 30g = 2.4m $9.8m - 2.4m = 30 \times 9.8$ 7.4m = 294 m = 39.7 kg This is closest to 40 kg

Show all forces acting on the diagram.



Resolving vertical forces to find the normal reaction N

 $N + 120\sin(30^\circ) = 60g$

N = 60g - 60

Resolving horizontal forces.

 $120\cos(30^\circ) - F_R = ma$ Mass on the point of moving has a zero acceleration and so a = 0.

$$60\sqrt{3} - \mu N = 0$$
 Friction: $F_R = \mu N$

$$\mu = \frac{60\sqrt{3}}{N}$$

$$\mu = \frac{60\sqrt{3}}{60g - 60}$$

$$\mu = \frac{\sqrt{3}}{g - 1}$$

Question 22

Answer D

The truck is towing the car and the tension in the towrope, T, represents this force. The resistance force R_1 acting on the truck is not relevant to the motion of the car.

Answer D

Mathematical Association of Victoria SPECIALIST MATHEMATICS 2008 Trial written examination 2 – Extended Analysis Questions Solutions

SECTION 2 Question 1

a. At
$$t = 0$$

 $r(t) = 30i - 20i$ [1M]

$$F(t) = 50t = 20t$$
[111]

Speed =
$$\sqrt{30^2 + 20^2}$$
 = 36.06 m/min [1A]

b.
$$\dot{r}(t) = 30(t+1)\dot{i} + 20(t-1)\dot{j}$$

 $r(t) = 30\left(\frac{t^2}{2} + t\right)\dot{i} + 20\left(\frac{t^2}{2} - t\right)\dot{j} + c$
 $r(0) = 0\dot{i} + 0\dot{j}$
 $\dot{r} = 0$
[1M]

$$\therefore r(t) = 30 \left(\frac{t^2}{2} + t\right) \dot{z} + 20 \left(\frac{t^2}{2} - t\right) \dot{z}$$
[1A]

c.
$$\sqrt{(100-0)^2 + (90-0)^2} = 134.5 \,\mathrm{m}$$
 [1A]

$$\mathbf{d.} \quad \overrightarrow{AP} = \overrightarrow{AO} + \overrightarrow{OP} \\ \overrightarrow{AP} = -500\,\underline{i} - 450\,\underline{j} + 30\left(\frac{t^2}{2} + t\right)\underline{i} + 20\left(\frac{t^2}{2} - t\right)\underline{j} \\ \therefore \quad \overrightarrow{AP} = \left(-500 + 15t^2 + 30t\right)\underline{i} + \left(-450 + 10t^2 - 20t\right)\underline{j}$$
[1A]

$$\mathbf{e.} \left| \overrightarrow{AP} \right| = \sqrt{\left(-500 + 15t^2 + 30t \right)^2 + \left(-450 + 10t^2 - 20t \right)^2}$$

$$| \rightarrow |$$
[1M]

Sketch the graph of $|\stackrel{\rightarrow}{AP}|$ in terms of *t*, From the graph of $|\stackrel{\rightarrow}{AP}|$ in terms of *t*, the minimum point is (5.5, 283.6) To the nearest minute the airport official is closest to the plane at *t* = 6 minutes [1A] **f.** If the plane crosses the path of the vector OA then the points O, A and P are collinear and so

there exists a constant b such that OP = bOA

$$\underline{r}(t) = 30\left(\frac{t^2}{2} + t\right)\underline{i} + 20\left(\frac{t^2}{2} - t\right)\underline{j} = 500b\,\underline{i} + 450b\,\underline{j}$$

Equating coefficients:

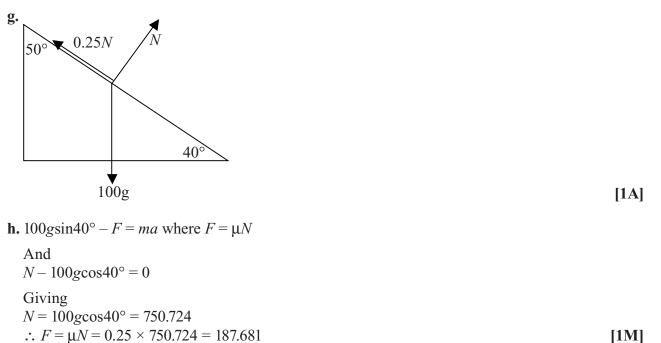
$$30\left(\frac{t^2}{2}+t\right) = 500b$$
 $20\left(\frac{t^2}{2}-t\right) = 450b$

Therefore making b the subject of these equations

$$\frac{30}{500} \left(\frac{t^2}{2} + t \right) = \frac{20}{450} \left(\frac{t^2}{2} - t \right)$$

Solving this equation on a calculator gives no solution (except at the origin *O*)

Therefore the plane does not cross the path of the vector *OA*



Using $100g\sin 40^{\circ} - F = ma$ $\therefore 629.932 - 187.681 = 100a$

 $\therefore a = 4.423$ To 2 decimal places $\therefore a = 4.42 \text{ m/s}^2$

[1A]

[2A]

i. Using

$$v^2 = u^2 + 2as$$

 $v^2 = 0^2 + 2 \times 4.423 \times 6$
 $\therefore v = 7.29$
To 2 significant figures
 $v = 7.3$ m/s

a.
$$P(1+i) = (1+i)^4 + 2(1+i)^2 - 4(1+i) + 8$$
 [1M]
 $(1+i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i$
 $\therefore (1+i)^4 = (2i)^2 = 4i^2 = -4$
 $\therefore P(1+i) = (2i)^2 + 2(2i) - 4 - 4i + 8$
 $= -4 + 4i - 4 - 4i + 8 = 0$ [1H]

b. Using conjugate factors

$$P(z) = (z - 1 - i)(z - 1 + i)(z + 1 + i\sqrt{3})(z + 1 - i\sqrt{3})$$
[1M]

Solutions are
$$z = 1 \pm i, -1 \pm i\sqrt{3}$$

In polar form

$$z = \sqrt{2}cis\left(\pm\frac{\pi}{4}\right), \ 2cis\left(\pm\frac{2\pi}{3}\right)$$
[1A]

$$\mathbf{c.} \ z_1 z_2 = \sqrt{2} \operatorname{cis} \frac{\pi}{4} \times 2 \operatorname{cis} \left(-\frac{2\pi}{3} \right)$$

$$= 2\sqrt{2} \operatorname{cis} \left(\frac{\pi}{4} + \frac{-2\pi}{3} \right)$$
[1M]

$$= 2\sqrt{2} \operatorname{cis}\left(\frac{1}{4} + \frac{1}{3}\right)$$

$$\therefore z_1 z_2 = 2\sqrt{2} \operatorname{cis}\left(-\frac{5\pi}{12}\right)$$
 [1A]

d.
$$z_1 = 1 + i$$
 and $z_2 = -1 - i\sqrt{3}$
$$\frac{z_1}{z_2} = \frac{1 + i}{-1 - i\sqrt{3}} \times \frac{-1 + i\sqrt{3}}{-1 + i\sqrt{3}}$$
$$\therefore \frac{z_1}{z_2} = \frac{(-1 - \sqrt{3}) + (\sqrt{3} - 1)i}{4}$$

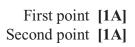
Using
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{3} - 1}{-1 - \sqrt{3}}$$

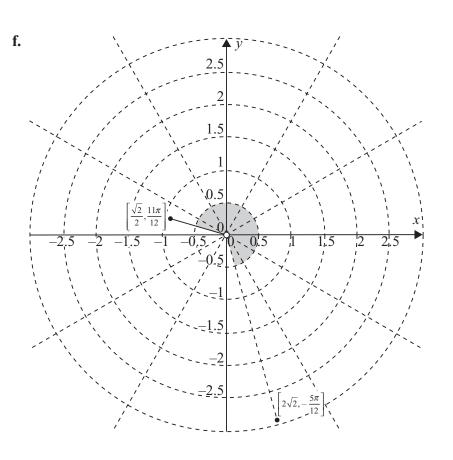
 $\therefore \tan \theta = \frac{\sqrt{3} - 1}{-1 - \sqrt{3}} \times \frac{-1 + \sqrt{3}}{-1 + \sqrt{3}} = \frac{4 - 2\sqrt{3}}{-2}$
Giving $\tan \theta = -2 + \sqrt{3}$ as required
Giving $\theta = \pi - \tan^{-1} \left(2 - \sqrt{3}\right)$
Arg $\frac{z_1}{z_2} = \theta = \pi - \frac{\pi}{12} = \frac{11\pi}{12}$
 $\therefore \frac{z_1}{z_2} = \frac{\sqrt{2}}{2} cis \frac{11\pi}{12}$

[1A]

[1H]

۲





Shading [1A] Boundaries [1A]

۲

18

۲

a.
$$\frac{dy}{dt} = 80k(80 - y)$$

 $\therefore \frac{dt}{dy} = \frac{1}{80k(80 - y)}$
 $\therefore t = \frac{1}{80k} \int \frac{1}{80 - y} dy$ [1M]
 $\therefore t = -\frac{1}{80k} \int \frac{-1}{80 - y} dy$ [1M]
 $\therefore t = -\frac{1}{80k} \ln |80 - y| + c$
 $\therefore -80k(t - c) = \ln |80 - y|$ [1A]
 $\Rightarrow e^{-80k(t - c)} = 80 - y$ [1A]
 $\Rightarrow y = 80 - e^{-80k(t - c)}$
 $t = 0, y = 1$
 $\therefore 1 = 80 - e^{80kc}$
 $\therefore e^{80kc} = 80 - 1$ [1M][1H]
 $\therefore \ln79 = 80kc$
 $\therefore c = \frac{1}{80k} \ln79$

c.
$$y = 80 - e^{-80k(t-c)}$$
 where $c = \frac{1}{80k} \ln 79$
 $y = 80 - e^{-80k(t-\frac{1}{80k}\ln 79)}$
 $\therefore y = 80 - e^{-80kt + \ln 79}$
 $\therefore y = 80 - e^{-80kt} e^{\ln 79}$ [1M]
 $\therefore y = 80 - e^{-80kt} (79)$
 $\therefore y = 80 - 79e^{-80kt}$
 $t = 10, y = 44$
 $\therefore 44 = 80 - 79e^{-800k}$ [1A]
 $\therefore 79e^{-800k} = 36$

Shape [1A] Correct points [1A]

f. y = 64% uptake after 20 months to the nearest %.

g. y = 80 represents the upper limit. 80% is the upper limit that the uptake of a certain mobile network approaches and levels out at.

Horizontal asymptote at y = 80

[1A]

a. Convert 100 km/hr to $\frac{100}{3.6} = 27\frac{7}{9}$ m/s. Using

$$s = \frac{u+v}{2}t$$

$$\therefore s = \frac{0+27\frac{7}{9}}{2} \times 6.8$$

$$s = 94\frac{4}{9}$$

[1M]

To 2 decimal places s = 94.44 m.

Also

$$v = u + at$$

$$\therefore 27\frac{7}{9} = 0 + 6.8a$$

$$a = 4.08497$$

To 2 decimal places $a = 4.08 \text{ m/s}^2$ [1A]

b. *R* = *ma*

$$-1000 = 200a$$

$$\therefore a = -5 \text{ m/s}^2$$

Using constant acceleration

$$v^2 = u^2 + 2as$$

$$\therefore 0 = (27\frac{7}{9})^2 - 10s$$

$$\therefore s = 77.1605$$

To 2 decimal places s = 77.16 m

[1A]

$$\mathbf{c.} \ a = \frac{1}{50} (v+1)^2$$

$$\therefore v \frac{dv}{dx} = \frac{1}{50} (v+1)^2$$

$$\therefore \frac{dv}{dx} = \frac{1}{50} \frac{(v+1)^2}{v}$$

$$\therefore \frac{dx}{dv} = \frac{50v}{(v+1)^2}$$

$$x = 50 \int \frac{v}{(v+1)^2} dv$$
[1M]

Let

$$u = v + 1, v = u - 1$$

$$\therefore du = dv$$

$$\therefore x = 50 \int \frac{u - 1}{u^2} du$$

$$\therefore x = 50 \int \frac{1}{u} - \frac{1}{u^2} dv$$

$$\therefore x = 50 \left(\ln |u| + \frac{1}{u} + c \right)$$

$$\therefore x = 50 \left(\ln |v + 1| + \frac{1}{v + 1} + c \right)$$

At

$$x = 0, v = 0, \therefore c = -1$$

$$x = 50 \left(\ln \left| v + 1 \right| + \frac{1}{v+1} - 1 \right)$$
 [1H]

(As v is positive, students do not need to include the modulus signs)

d.
$$x = 50 \left(\ln |v+1| + \frac{1}{v+1} - 1 \right)$$

Let
 $x = 100$
 $v = 18.1 \text{ m/s (found on calculator)}$
[1A]
e. $x = 50 \left(\ln |v+1| + \frac{1}{v+1} - 1 \right)$
Let

v = 50

x = 147.6 m (found on calculator) [1A]

a.
$$-1 \le 2x + 1 \le 1$$

 $\therefore -2 \le 2x \le 0$
Therefore
 $-1 \le x \le 0$
 $\therefore a = -1, b = 0$
[1A]

b.
$$f(x) = 0.5\cos^{-1}(2x+1)$$

 $\therefore f'(x) = 0.5\frac{-1}{\sqrt{1-(2x+1)^2}} \times 2$
 $\therefore f'(x) = \frac{-1}{\sqrt{1-(2x+1)^2}}$

For a stationary point solve

$$\frac{-1}{\sqrt{1 - (2x + 1)^2}} = 0$$

No solution found No solution hence no stationary point

c.
$$\frac{d}{dx} (x \cos^{-1}(2x+1))$$

Using the Product Rule:
 $= \cos^{-1}(2x+1) \cdot 1 + x \cdot \frac{-2}{\sqrt{1-(2x+1)^2}}$
 $= \cos^{-1}(2x+1) - \frac{2x}{\sqrt{1-(2x+1)^2}}$

$$\mathbf{d.} \int_{-\frac{1}{2}}^{0} \left(\cos^{-1}(2x+1) - \frac{2x}{\sqrt{1 - (2x+1)^2}} \right) dx = \left[x \cos^{-1}(2x+1) \right]_{-\frac{1}{2}}^{0}$$

$$\therefore \int_{-\frac{1}{2}}^{0} \cos^{-1}(2x+1) dx = \int_{-\frac{1}{2}}^{0} \frac{2x}{\sqrt{1 - (2x+1)^2}} dx + \left[x \cos^{-1}(2x+1) \right]_{-\frac{1}{2}}^{0}$$

$$(2A)$$

[1A]

e. Working below, using answer for d.

$$0.5 \int_{-\frac{1}{2}}^{0} \cos^{-1}(2x+1)dx = 0.5 \int_{-\frac{1}{2}}^{0} \frac{2x}{\sqrt{1-(2x+1)^{2}}} dx + 0.5 \left[x\cos^{-1}(2x+1)\right]_{-\frac{1}{2}}^{0}$$

$$\therefore 0.5 \int_{-\frac{1}{2}}^{0} \cos^{-1}(2x+1)dx = 0.5 \int_{-\frac{1}{2}}^{0} \frac{2x}{\sqrt{1-(2x+1)^{2}}} dx + 0.5 \left[0 - \frac{-1}{2}\cos^{-1}(0)\right]$$

$$= 0.5 \left(\frac{1}{2} - \frac{\pi}{4}\right) + 0.5 \frac{1}{2}\cos^{-1}0$$

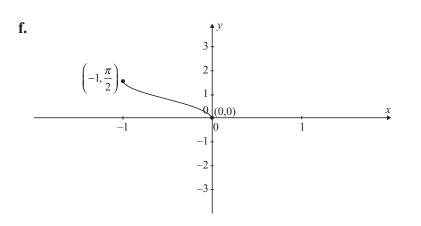
$$= \frac{1}{4} - \frac{\pi}{8} + \frac{\pi}{8}$$

$$= \frac{1}{4}$$

Check:

$$0.5\int_{-\frac{1}{2}}^{0}\cos^{-1}(2x+1)dx = 0.25$$

found on calculator



[1M][1A]

[1A]

g. Volume =
$$\pi \int_{0}^{h} x^2 dy$$

Using
 $y = 0.5\cos^{-1}(2x+1)$
 $\therefore 2y = \cos^{-1}(2x+1)$
 $\therefore \cos(2y) = 2x+1$
 $\therefore x = \frac{\cos(2y)-1}{2}$
 $\therefore x^2 = \left(\frac{\cos(2y)-1}{2}\right)^2$
Volume $\frac{\pi}{4} \int_{0}^{h} (\cos(2y)-1)^2 dy$ for $0 < h < \frac{\pi}{2}$

$$\mathbf{h}. \text{ Volume} = \frac{\pi}{4} \int_{0}^{h} (\cos(2y) - 1)^{2} dy$$

$$\frac{\pi}{4} \int_{0}^{h} (\cos(2y) - 1)^{2} dy$$
Using double angle formula
$$\cos(4y) = 2\cos^{2}(2y) - 1$$

$$\therefore \cos^{2}(2y) = \frac{\cos(4y) + 1}{2}$$

$$= \frac{\pi}{4} \int_{0}^{h} (\cos^{2}(2y) - 2\cos(2y) + 1) dy$$

$$= \frac{\pi}{4} \int_{0}^{h} (\frac{\cos(4y) + 1}{2} - 2\cos(2y) + 1) dy$$

$$= \frac{\pi}{4} \left[\frac{1}{8} \sin(4y) + \frac{y}{2} - \sin(2y) + y \right]_{0}^{h}$$

$$= \frac{\pi}{4} \left(\frac{1}{8} \sin(4h) + \frac{3h}{2} - \sin(2h) \right)$$
For $h = \frac{\pi}{4}$

$$\text{[1M]}$$

$$\text{Volume} = \frac{\pi}{4} \left(\frac{1}{8} \sin(\pi) + \frac{3\pi}{8} - \sin\left(\frac{\pi}{2}\right) \right)$$

$$=\frac{\pi}{4}\left(\frac{3\pi}{8}-1\right)\,\mathrm{cm}^3$$
[1A]