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This book presents: 
 

• worked solutions, giving you a series of points to show you how to work 
through the questions. 

• mark allocations 
• tips on how to approach the questions. 
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Question 1 

Sketch the graph of x
x

y −
−

=
2

1 on the axes below. Give the exact coordinates of any 

stationary points and intercepts and the equations of any straight line asymptotes. 

x-6 -4 -2 2 4 6

y

-6

-4

-2

2

4

6

O

 
Worked solution 

x
x

y −
−

=
2

1  has a vertical asymptote at x = 2 and an oblique asymptote at y = –x. 

Stationary points occur where 0=
dx
dy  

         
( )

1
2

1
2 −−

=
xdx

dy  

           
( )

1
2

10 2 −−
=

x
 

( ) 12 2 =− x  

     2 – x = ±1 

           x = 1, 3 

Stationary points are at (1, 0) and (3, –4). 

x-intercept, x = 1, y = 0 

y-intercept, x = 0, y = 1
2
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4 marks 

Mark allocation 
• 1 mark for the equations of both straight line asymptotes. 
• 1 mark for the coordinates of both stationary points. 
• 1 mark for correct intercepts. 
• 1 mark for correct shape. 

 

(1,0) 

(3,–4) 

x = 2 

 y = –x 

(0, 1
2 ) 
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Question 2 

Find all solutions of 0103 =++ zz , Cz∈ . 

Worked solution 

Let ( ) 103 ++= zzzP  

Find a factor of ( )zP  

( ) 01 ≠P , ( ) 01 ≠−P , ( ) 02 ≠P  

( ) ( ) ( ) 010222 3 =+−+−=−P  

2+∴ z  is a factor 

Find the quadratic factor 

52

0
105
105

42
102

2
1002

2

2

2

23

23
+−

+
+

−−

++−

+

++++
zz

z
z

zz
zz

zz
zzzz

 

( ) ( )( )522 2 +−+= zzzzP  

( ) ( )( )4122 2 ++−+= zzz  

( ) ( )( )412 2 +−+= zz  

( ) ( ) ( )( )22 212 izz −−+=  

( )( )( )izizz 21212 −−+−+=  

 

Solving ( 2)( 1 2 )( 1 2 ) 0z z i z i+ − + − − =  

2−=z ,   iz 21−= ,   iz 21+=  
3 marks 

Mark allocation 
• 1 mark for 2−=z . 
• 1 mark for correct method. 
• 1 mark for three correct solutions. 
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Question 3 

Find the cube roots of 344 −i  in polar form. 

Worked solution 

Let 3 4 3 4 cis(θ)z i r= − + =    

Where ( ) 22
434 +−=r    and  4 1tan(θ)

4 3 3
= = −
−

 

 16316 +×=r     πθ π
6

= −  

 8=r       5πθ
6

=  

3 5π8cis
6

z ⎛ ⎞∴ = ⎜ ⎟
⎝ ⎠

 

1
35π8cis

6
z ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

1
3 1 5π8 cis 2 π

3 6
z k⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  by De Moivre’s Theorem 

0=k   5π2cis
18

z ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

1=k   5π 2π 17π2cis 2cis
18 3 18

z ⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1−=k   5π 2π 7π2cis 2cis
18 3 18

z ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

In polar form the cube roots of 344 −i  are: 7π2cis
18

⎛ ⎞−⎜ ⎟
⎝ ⎠

, 5π2cis
18

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 17π2cis
18

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
3 marks 

Mark allocation 

• 1 mark for finding 5π8cis
6

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

• 1 mark for applying De Moivre’s Theorem. 
• 1 mark for three correct solutions. 
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Question 4  
Find the point of intersection of the normals to the curve x2y + y2 = 5 at y = 1. 

Worked solution 

When 1=y ,  511 22 =+×x  

   42 =x  

     2±=x  

Need to find the gradient of the normals at the points (2, 1) and (–2, 1) 

x2y + y2 = 5 

Using implicit differentiation to find the gradient of the tangent at these points 

022 2 =++
dx
dyy

dx
dyxxy  

( ) xyyx
dx
dy 222 −=+  

yx
xy

dx
dy

2
2

2 +
−

=  

At (2, 1) 
3
2

122
122

2 −=
×+
××−

=
dx
dy   ⇒  gradient of normal is 

2
3  

At (–2, 1) 
( ) 3

2
122

122
2 =

×+−
×−×−

=
dx
dy  ⇒  gradient of normal is 

2
3

−  

Equation of the normal at (2, 1): cxy +=
2
3  ⇒    c+×= 2

2
31 ,  c = –2 

     2
2
3

−= xy  

Equation of the normal at (–2, 1): cxy +−=
2
3  ⇒   ( ) c+−×−= 2

2
31 , c = –2 

     2
2
3

−−= xy  

The normal equations 2
2
3

−= xy  and 2
2
3

−−= xy  intersect on the y-axis at (0, –2) 

5 marks 

Mark allocation 

• 1 mark for finding the points (2, 1) and (–2, 1). 
• 1 mark for a correct method used to find derivative. 
• 1 mark for finding the correct derivative. 
• 1 mark for correct normal equations. 
• 1 mark for correct answer (0, –2). 
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Question 5 

Given 
bx

a
x

x
dx
d

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

− 22 1
2arctan , 1≠x  

Find the real numbers a and b. 

Worked solution 

Let ( )uy arctan=   where 
1

2
2 −

=
x

xu  ⇒  ( ) ( )
( )22

2

1
2212

−

−−
=

x
xxx

dx
du  

    
( )22

2

1
22

−

−−
=

x
x

dx
du  

    ( )
( )22

2

1
12

−

+−
=

x
x

dx
du  

Applying the chain rule 

dx
du

du
dy

dx
dy

×=  

( )
( )22

2

2 1
12

1
1

−

+−
×

+
=

x
x

udx
dy  

( )
( )22

2

2

2
1

12

1
21

1
−

+−
×

⎟
⎠
⎞

⎜
⎝
⎛

−
+

=
x

x

x
xdx

dy  

( )
( ) ( )222

2

21
12

xx
x

dx
dy

+−

+−
=  

( )
( ) 224

2

412
12

xxx
x

dx
dy

++−
+−

=  

( )
12

12
24

2

++
+−

=
xx

x
dx
dy  

( )
( )22

2

1
12

+

+−
=

x
x

dx
dy  

1
2

2 +
−

=
xdx

dy  

 
Hence a = –2 and b = 1 

3 marks 

Mark allocation 
• 1 mark for applying the chain rule correctly. 
• 1 mark for simplifying algebra. 
• 1 mark for two correct answers. 



9 

TURN OVER 
Copyright © Insight Publications 2009 

Question 6 

Find 6 2 1 .x xe e dx+∫  

Worked solution 

Let 12 += xeu  
xe

dx
du 22=   

dxedu x22=  
dxee xx 126 +∫  

( )dxeee xxx 224 21
2
1

+= ∫  

( ) ( )dxeee xxx 2222 21
2
1

+= ∫    If  12 += xeu ,  12 −=⇒ ue x  

( ) duuu∫ −= 21
2
1  

( ) duuuu 2
1

2 12
2
1
∫ +−=  

duuuu∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 2

1
2
3

2
5

2
2
1  

cuuu +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×−= 2

3
2
5

2
7

3
2

5
22

7
2

2
1  

cuuu ++−= 2
3

2
5

2
7

3
1

5
2

7
1  

( ) ( ) ( ) ceee xxx ++++−+= 2
3

22
5

22
7

2 1
3
11

5
21

7
1    where c is constant 

4 marks 

Mark allocation 

• 1 mark for selecting correct substitution. 
• 1 mark for simplifying integral in terms of u. 
• 1 mark for integrating correctly. 
• 1 mark for correct answer. 

 

Tip 

• Use substitution. 
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Question 7 

An object in a refrigerator cools according to differential equation ( )3−−= Tk
dt
dT , Rk ∈ , 

where T °C is the temperature of the object t hours after it being placed in the refrigerator.     
A drink with an initial temperature of 18°C is placed in the refrigerator for 1 hour, and it cools 
to 8°C in that time. 

a. Show that 315 += −kteT  is a solution to this differential equation. 

Worked solution 

Given     315 += −kteT   ..... (1) 

⇒  ktek
dt
dT −−= 15  

( )ktek
dt
dT −−= 15  ..... (2) 

From (1)  315 −=− Te kt  

Substituting into (2) 

⇒  ( )3−−= Tk
dt
dT  

Therefore 315 += −kteT  is a solution of ( )3−−= Tk
dt
dT . 

Alternative method: 

( )3−−= Tk
dt
dT  

( )3
1
−−

=
TkdT

dt  

∫ −
−= dt

Tk
t

3
11  

( )1 log 3 ,et T c
k

= − − +  3>T  

t = 0, T = 18,   ( ) c
k e +−−= 318log10  

( )15log1
ek

c =  

( ) ( )15log13log1
ee k

T
k

t +−−=  

⎟
⎠
⎞

⎜
⎝
⎛ −

−=
15

3log1 T
k

t e  

15
3−

=− Te kt  

315 += −kteT  
2 marks 

Mark allocation 
• 1 mark for method used. 
• 1 mark for showing correct answer.
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b. Find the exact value of k. 

Worked solution 
When t = 1, T = 8 

18 15 3ke− ×= +  

15
5

=−ke  

⎟
⎠
⎞

⎜
⎝
⎛−=

3
1log ek  

( )3logek =  
1 mark 

Mark allocation 
• 1 mark for correct answer. 

 

c. Find the exact temperature of the drink after 2 hours. 

Worked solution 

315 += −kteT  
( )log 315 3e tT e−= +  
( ) 315 3log += − eteT  

( )log 315 3e
t

T e
−

= +  
( ) 3315 += −tT  

When t = 2 ( ) 3315 2 += −T  

  3
9

15
+=T  

  24
3

T =  °C 

1 mark 
Total 2 + 1 + 1 = 4 marks 

Mark allocation 

• 1 mark for correct answer. 
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Question 8 
A mass of M kg is connected to a 20 kg mass by a light string passing over a smooth pulley. 

The rough plane is inclined at 30° to the horizontal level and has coefficient of friction 
5
1

=μ . 

The tension in the string connecting the two masses is 150 newtons.  

 
 
 
 
 
 
 
 
 
 
 
a. Show that the M kg mass is accelerating up the inclined plane at 2.3 m/s2. 

Worked solution 
 
 
 
 
 
 
 
 
 
 
 
 
Resolving forces around the 20 kg mass. Assume this mass is moving downwards 

aTg 2020 =−   150=T newtons 
20 9.8 150 20a× − =  

4620 =a  
3.2=a  m/s2 

Since the acceleration is positive, the 20 kg mass is moving downwards. The masses are 
connected so the M kg mass on the inclined plane must be moving upwards with the same 
acceleration. 

2 marks 

Mark allocation 
• 1 mark for equation of motion for vertical mass. 
• 1 mark for correct answer. 
 

Tip 

• Show all forces acting on the diagram. 
 

Mg 

N 

Fr 

T 
T 

  20g 

M kg 
20 kg 

30° 

30° 

20 kg 
M kg 
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b. Determine the exact value of M. 

Worked solution 
Resolving forces around the M kg mass on the inclined plane.  

This is moving upwards with an acceleration of 2.3 m/s2. 

MaFrMgT =−°− )30sin(    
2

3)30cos( MgMgN =°= newtons 

MMgMg 3.2
10
3

2
150 =−−    

10
3

2
3

5
1 MgMgNFr =×== μ  newtons 

150
10
3

210
23

=++
MgMgM  

( ) 1503523
10

=++ ggM  

( )gM
3523

1500
++

=   kg 

3 marks 
Total 2 + 3 = 5 marks 

Mark allocation 
• 1 mark for resolving forces correctly. 
• 1 mark for correct substitution into the equation of motion. 
• 1 mark for correct answer. 

 
 

Question 9 

The position of a particle at time t is given by ( ) ( )~ ~ ~
1 2sin(π ) cos(2π ) 2r t i t j= − + +  

a. Find the Cartesian equation of the path of the particle. 

Worked solution 
Find y in terms of x: 

1 2sin(π )x t= −    cos(2π ) 2y t= +  
1sin(π )

2
xt −

=   …..(1)  21 2sin (π ) 2y t= − +    

     23 2sin (π )y t= −  …..(2) 

Substitute (1) into (2) 
2

2
123 ⎟

⎠
⎞

⎜
⎝
⎛ −

−=
xy  

( ) 31
2
1 2 +−−= xy  

2 marks 

Mark allocation 
• 1 mark for selecting correct substitution. 
• 1 mark for simplifying integral in terms of u. 
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b. Sketch a graph of the path of the particle for 
2
10 ≤≤ t  indicating its direction of motion.  

x-4 -3 -2 -1 1 2 3 4

y

-4

-3

-2

-1

1

2

3

4

O

 
Worked solution 

When  0=t  )0sin(21−=x  2)0cos( +=y  

  1=x    3=y  

When  
2
1

=t  π1 2sin
2

x ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 cos(π) 2y = +  

  1−=x    1=y  

At 0=t  the particle starts at the point (1, 3). It moves anticlockwise along the parabola 

( ) 31
2
1 2 +−−= xy  to reach the point (–1, 1) at 

2
1

=t . 

x-4 -3 -2 -1 1 2 3 4

y

-4

-3

-2

-1

1

2

3

4

O

(1, 3)

(-1, 1)

2 marks 
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Mark allocation 
• 1 mark for drawing their curve. 
• 1 mark for correct answer with direction of motion shown. 

 

c. Determine the speed at which the particle is travelling when 
4
1

=t . 

Worked solution 

Speed = || ~r  

( ) ( )~ ~ ~
1 2sin(π ) cos(2π ) 2r t i t j= − + +  

~ ~ ~
2π cos(π ) 2π sin(2π )r t i t j= − −  

( ) ( )2 2
~| | 2π cos(π ) 2π sin(2π )r t t= − + −  

2 2
~| | 2π cos (π ) sin (2π )r t t= +  

 

When 
4
1

=t ,  2 2
~

π π| | 2π cos sin
4 2

r ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  
2

2
~

1| | 2π 1
2

r ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

  ~| | 6 πr =  

1 mark 
Total 2 + 2 + 1 = 5 marks 

 

Mark allocation 
• 1 mark for correct answer. 

 

Tip 

• Differentiate to find velocity vector. 
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Question 10 
A cyclist of mass 72 kg is travelling on a straight track with a velocity of 1 m/s when he 
passes O. At that instant he applies a variable force of vv 33 + newtons, where v m/s is his 
velocity t seconds after passing O. Calculate the exact distance of the cyclist from O when his 
velocity reaches 3  m/s. Assume air resistance is negligible.  
 
4 marks 
 

Worked solution 
maF =  

avv 7233 =+  

72
33 vva +

=  

72
33 vv

dx
dvv +

=  

v
vv

dx
dv

72
33 +

=  

3
72
2 +

=
vdv

dx  

∫ +
= dv

v
x

3
72
2  

∫ +
= dv

v
x

3
3

3
72

2  

cvx +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

3
tan

3
372 1  

cvx +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

3
tan324 1  

When 0=x , 1=v m/s  

c+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

3
1tan3240 1  

6
324 π
×−=c  

π34−=c  

π34
3

tan324 1 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − vx  

Find x when 3=v m/s  

π34
3
3tan324 1 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −x  

( ) π341tan324 1 −= −x  

ππ 34
4

324 −×=x  

ππ 3436 −=x
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π32=x  
The cyclist is π32 m from O when his velocity is 3 m/s. 
 

Mark allocation 
1 mark for finding the acceleration in terms of v. 
1 mark for establishing correct integral. 
1 mark for finding correct expression for x in terms of v. 
1 mark for answer. 
 
Tip  

• Write down the equation of motion and find the acceleration in terms of v. 
 


