••••	••• •••••	••• •••••	• •••• • ••• • •	

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

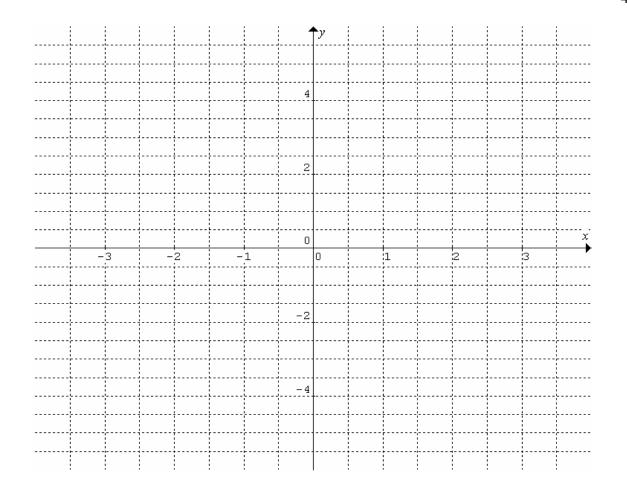
2009

Trial Examination 1

Instructions

Answer **all** questions. Do **not** use calculators.

A decimal approximation will not be accepted if an **exact** answer is required to a question.


In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1 Sketch the graph of the relation $y = \sqrt{2x(x-1)}$ for $x \le 3$. Give the exact coordinates of any endpoints and intercepts, and state the equations of all straight-line asymptotes.

4 marks

Question 2 Given
$$z = \frac{(1+i\sqrt{3})^5}{8(1-i)^6} = a + bi$$
.
a. Let $\frac{(1+i\sqrt{3})^5}{8(1-i)^6} = a + bi$, show that $a = -\frac{\sqrt{3}}{4}$ and $b = -\frac{1}{4}$. 2 marks

b. $z = \frac{(1+i\sqrt{3})^5}{8(1-i)^6}$ is a solution of $64z^6 + 1 = 0$. Find the other solutions of $64z^6 + 1 = 0$ in x + iy form.

2 marks

Question 3 Consider the two vectors $\tilde{p} = 3\tilde{i} + 4\tilde{j}$ and $\tilde{q} = -3\tilde{j} + 4\tilde{k}$. **a.** Find a $2\sqrt{26}$ long vector that bisects the angle between \tilde{p} and \tilde{q} .

3 marks

b. Find the coordinates of the point that divides the line segment from point P(3, 4, 0) to point Q(0, -3, 4) into the ratio 3:1.

1 mark

Question 4 Given $f(x) = -2(\cos^{-1}(x+1) - \pi)$.

a. Find $f^{-1}(x)$ including its domain and range.

b. Find g(f(x)), where $g(x) = \cos x$.

2 marks

2 marks

Question 5 Given the relation $3y^2\sqrt{x+1} = x + y$ and $\frac{dy}{dx} > 0$, find the gradient of the tangent to the curve at x = 0.

3 marks

Find the exact value of $f(\sqrt{3})$.

a.

Question 6 Consider $f(x) = \tan^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right) + \sin^{-1}\left(\frac{1}{x}\right)$.

b. Find the exact value of $f'(\sqrt{3})$.

3 marks

2 marks

Question 7 Consider $f(x) = \cos^3(x-1)$ and g(x) = x-1. Let $p = \sin(1)$. **a.** Find $\int_{0}^{2} f(x) dx$ in terms of p. 2 marks

b. Find the exact value of $\int_{0}^{2} f(x)g(x)dx$.

1 mark

Find the initial resultant force on the particle.

At what time does the particle travel at 2.5 ms^{-1} .

2009 Specialist Math Trial Exam 1

Find the displacement of the particle between t = 0 and t = 2.

Question 8 A particle moves so that its position at time $t \ge 0$ is given by $\tilde{r} = (1+t)\tilde{i} + (2-2t)\tilde{j} - 3t\tilde{k}$, where \tilde{i} and \tilde{j} are horizontal perpendicular unit vectors, and \tilde{k} is a unit vector pointing vertically upwards.

b. Show that the particle travels in a straight line.

a.

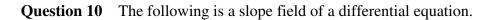
b.

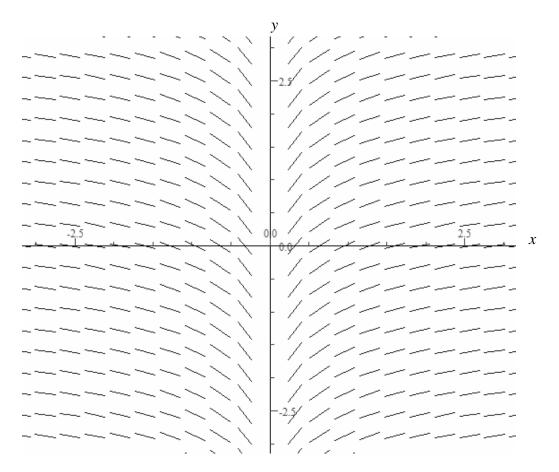
c.

c. Find the exact angle that the path of the particle makes with the horizontal plane. 2 marks

Question 9 The velocity of a 4.0-kg particle at time $t \ge 0$ is given by $\tilde{v} = 2\tilde{i} - t^2\tilde{j} + \frac{t\sqrt{5}}{2}\tilde{k}$. Time is measured in seconds, and distance in metres.

a. Find the change in momentum of the particle in the first $\sqrt{5}$ s. 1 mark


....


1 mark

1 mark

2 marks

1 mark

a. Determine a plausible differential equation (involving a parameter, i.e. an unknown constant) that gives the above slope field.

1 mark

2 marks

b. Find a particular solution through the points (-1, 1) and (e, 1.5).

c. Sketch the solution curve(s) to the differential equation on the above slope field. Note: $e \approx 2.7$.

2 marks

End of Exam 1

© Copyright itute.com 2009