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Question 1 
 

( )22 2 3 3x y x y+ = +  expanding gives  4 2 2 4 3 32x x y y x y+ + = +  

  taking d
dx

 of each term ( implicit differentiation ) 

( ) ( ) ( ) ( ) ( )4 2 2 4 3 32d d d d dx x y y x y
dx dx dx dx dx

+ + = +         

product rule in the second term        

3 2 2 3 2 24 4 4 4 3 3dy dy dyx xy x y y x y
dx dx dx

+ + + = +       M1 

( )3 2 2 2 2 34 4 3 3 4 4 dyx xy x y x y y
dx

+ − = − −      

3 2 2

2 2 3

4 4 3
3 4 4

dy x xy x
dx y x y y

+ −
=

− −
        A1 

 
 
 

Question 2 
 

( ) 24sin 3
b

a

y x V y dxπ= = ∫  

( )
6

2

0

16sin 3V x dx

π

π= ∫         A1 

( )( )
6

0

8 1 cos 6V x dx

π

π= −∫         M1 

( )
6

0

18 sin 6
6

V x x
π

π ⎡ ⎤= −⎢ ⎥⎣ ⎦
        

( ) ( )1 18 sin 0 sin 0
6 6 6

V ππ π⎡ ⎤⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

24
3

V π
=           A1  
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Question 3 
 

Let  2 3 iα = + , then by the conjugate root theorem, since a and b are real, 

2 3 iβ = −  is also a root.  Now  24 and 4 3 7iα β αβ+ = = − = , so that 

2 4 7z z− +  is a factor.         A1 

( ) 3 2 21 0P z z az bz= + + − =  

( ) ( )( )2 4 7 3 0P z z z z= − + − =    expanding gives 

2 : 3 4 7
: 7 12 19

z a
z b

= − − = −
= + =

         A1  

all the roots are  2 3 and 3z i z= ± = .      A1  
 

Question 4 

( ) ( )3 7 2 3 4

c a b

c i yj k i j k i j k

α β

α β

= +

= + + = − + + − +
     M1 

( )
( )
( )

1 3 2

2 3

3 7 4

i

j y

k

α β

α β

α β

= +

= − −

= +

         A1 

( ) ( )3 1 2 4α− ⇒ =  
2 and 1α β= = − ,  substituting gives  5y = −      A1 

 

Question 5 

a. ( )
1

2 2 2
2

x x
1 49 4 8 9 4
2 9 4

dv xv x x x
dx x

− −
= − ⇒ = − − =

−
 

 4dva v x
dx

= = −         A1 
 

b. 29 4dxv x
dt

= = −  

 
2

1
9 4

t dx
x

=
−

⌠
⎮
⌡

        A1 

 11 2sin now when 0 0 0
2 3

xt C x t C− ⎛ ⎞= + = = ⇒ =⎜ ⎟
⎝ ⎠

   A1 

 ( )1 2 22 sin sin 2
3 3
x xt t− ⎛ ⎞= ⇒ =⎜ ⎟

⎝ ⎠
 

 ( )3 sin 2
2

x t=          A1 
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Question 6 
 

a. ( ) 2
2

1 1 for 0r t t i t j t
t t

⎛ ⎞ ⎛ ⎞= + + + >⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 vector equation,  

the parametric equations are  ( ) ( ) 2
2

1 11 2x t y t
t t

= + = +   M1 

squaring ( ) 2 2 2
2 2

1 11 2 2 2x t t y
t t

⎛ ⎞= + + = + + = +⎜ ⎟
⎝ ⎠

 

2 2y x= −    is the Cartesian equation of the path.    A1 
 

b. since 0t > , the minimum value of x, occurs when  2

11 0 1dx t
dt t

= − = ⇒ =    

2 and 2x y⇒ ≥ ≥        A1  
 graph starts from the point ( )2,2       G1   
 

x

y

-3 -2 -1 0 1 2 3

-2

0

2

4

6
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Question 7 
 

4 2

2 2

16 8
2 2

x xy
x x
−

= = −  

2

2
xy = is an asymptote, and  0x =  is a vertical asymptote    A1 

the graph does not cross the y-axis,  

crosses the x-axis when 40 16 2y x x= ⇒ = ⇒ = ±   at ( ) ( )2,0 2,0−   A1 

for turning points,  4
3

16 0 16dy x x
dx x

= + = ⇒ = −  this has no real solution,  

so there are no turning points.        A1 

correct graph          G1 

 

 

 
 
 

x

 y 
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Question 8 
 

2 3
dy x
dx x

=
+

 

( )1let 2 3 2 3
22 3

x duy dx u x x u
dxx

= = + = = −
+

⌠
⎮
⌡

    

1 1
2 2

1 3
4

1 3
4

uy du
u

y u u du
−

−
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⌠
⎮
⌡
⌠
⎮
⌡

        M1 

( ) ( )

3 1
2 2

1
2

1 2 6
4 3

93
2 3 2 3

1 12 6 2 3 3 2 3
6 3

y u u C

u u u uy C C

y x x C x x C

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

−⎛ ⎞ ⎛ ⎞= − + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − + + = − + +

     A1 

now when 3 0 0x y C= = ⇒ =  
11 2 3 1

3 3
xy x a b⎛ ⎞= − + = = −⎜ ⎟

⎝ ⎠
     A1 

 
Question 9 
 
 
i. 
 
 
 
 
 
 
 
 
 
 
 
 
 correct forces on the diagram        A1 
 
 

T 

030  

8g  
10g  

T 

N 

Nμ  
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ii. resolving downwards for the 10 kg weight hanging vertically    
 

( )1 10 10g T a− =          
 

for the crate on the incline plane, resolving upwards parallel to the plane   
 

( ) ( )02 8 sin 30 8T N g aμ− − =       A1  
 

resolving perpendicular to the plane    
 

( ) ( ) ( )0 03 8 cos 30 0 8 cos 30N g N g− = =     
 

( ) ( ) ( )0 02 becomes 8 cos 30 8 sin 30 8T g g aμ− − =     A1 
 

adding this to equation ( )1  to eliminate T,       
 

( ) ( )( )0 010 8 sin 30 cos 30 18g g aμ− + =  substituting    M1 

( ) ( )0 03 3 1cos 30 sin 30
4 2 2

μ = = =       

 1 310 8 18
2 8

g a⎡ ⎤⎛ ⎞− + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

  

 2m/s
6
ga =          A1 

 
Question 10 
 

a. 
( )2

6 6
6 6

y
x x x x

= =
− −

 

 vertical asymptotes at  0x =   and  6x =   

 horizontal asymptotes at  0y =   ( the x-axis )     A1  

 the turning point occurs when 2 6 0 3x x− = ⇒ =  

 the maximum turning point is 23,
3

⎛ ⎞−⎜ ⎟
⎝ ⎠

 and correct graph    A1 
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x

y

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 

b. the area is
3

2

1

6
6

dx
x x−

⌠⎮
⌡

 but this is below the x-axis and negative,  

so the area is   
3

2

1

6
6

A dx
x x

=
−

⌠⎮
⌡

      A1 

 by partial fractions  2

6
6 6

B C
x x x x

= +
− −

   adding the partial fractions  

 ( )
( )

( )
2

6 6
6 6

B x Cx x C B B
x x x x

− + − +
= =

− −
     

 ( ) ( )1 6 6    and  2 0  so that 1B C B B C= − = = =  
33

2

1 1

6 1 1
6 6

A dx dx
x x x x

⎛ ⎞= = +⎜ ⎟− −⎝ ⎠
⌠⌠⎮ ⎮⌡ ⌡

      M1  

( ) ( )
3

3

1
1

log log 6 log
6e e e

xA x x
x

⎡ ⎤⎛ ⎞= − − =⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ −⎝ ⎠⎣ ⎦
     

( ) ( )1log 1 log log 5 5
5e e eA a⎡ ⎤⎛ ⎞= − = =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     A1 
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Question 11 
 

( ) ( )3 3 0
m m

i i+ − − =  

now    3 2cis and 3 2cis
6 6

i iπ π⎛ ⎞ ⎛ ⎞+ = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    A1 

2cis 2cis 0
6 6

m m
π π⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
, using DeMoivre’s theorem 

2 cis 2 cis 0
6 6

m mm mπ π⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       M1 

2 cos sin cos sin 0
6 6 6 6

m m m m mi iπ π π π⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − + − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

   

but  ( ) ( ) ( ) ( )cos cos and sin sinθ θ θ θ− = − = − , so that 

12 sin 0
6

m mi π+ ⎛ ⎞ =⎜ ⎟
⎝ ⎠

         A1 

sin 0
6

0, , 2 ,3 , ....
6

m

m k

π

π π π π π

⎛ ⎞ =⎜ ⎟
⎝ ⎠

= =
 

6 wherem k k Z= ∈         A1 

 
 
 
 
 
 
 
 
 

END OF SUGGESTED SOLUTIONS 

http://kilbaha.googlepages.com

	Button99: 


