

When,
$$y = \frac{4}{-1} - 2(-1)^2$$

Maximum at $(-1,-6)$ [A1]
Asymptotes: $x = 0$, $y = -2x^2$ [A2]
Total 5 marks
Question 2
a.
 $P(z) = z^2 + (1 + i\sqrt{2})z + 4i\sqrt{2} - 12$

$$P(-4) = 16 - 4 - 4i\sqrt{2} + 4i\sqrt{2} - 12$$
[M1]
= 0

b.

$$z^{2} + (1 + i\sqrt{2})z + 4i\sqrt{2} - 12 = 0$$

$$z^{2} + (1 + i\sqrt{2})z + 4(i\sqrt{2} - 3) = (z + 4)(z + a + bi)$$

$$= z^{2} + az + biz + 4z + 4a + 4bi$$

$$= z^{2} + (a + 4 + bi)z + 4a + 4bi$$
[A1]

Equating coefficients of z:

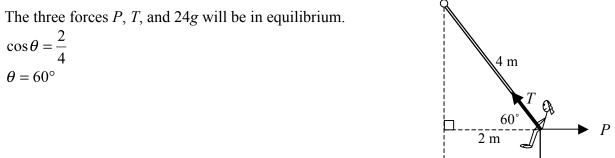
$$1+i\sqrt{2} = a+4+bi$$
 equating real components and equating imaginary components
 $a+4=1$ and $b=\sqrt{2}$
 $a=-3$
Therefore the other fortunin $(z-2+i\sqrt{2})$ here a threader other real time in $2-i\sqrt{2}$

Therefore the other factor is $(z-3+i\sqrt{2})$, hence the other solution is $3-i\sqrt{2}$ [A1]

Total 5 marks

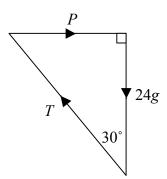
[M1]

Question 3

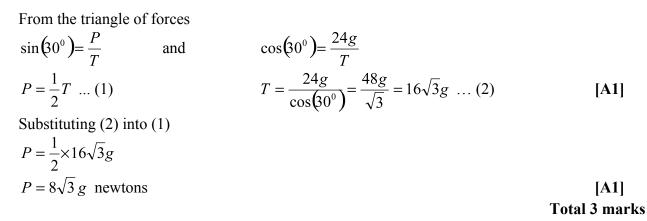


24g

Adding the forces head to tail.



[M1]



Question 4

$$\cot(2x) - \cot(x) = 2$$

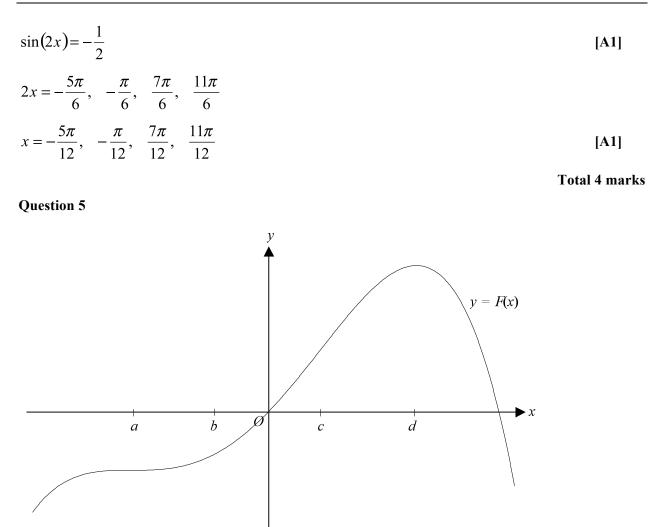
$$\frac{\cos(2x)}{\sin(2x)} - \frac{\cos(x)}{\sin(x)} = 2$$

$$\frac{\sin(x)\cos(2x) - \cos(x)\sin(2x)}{\sin(2x)\sin(x)} = 2$$
[M1]
$$\frac{\sin(x-2x)}{\sin(2x)\sin(x)} = 2$$

$$\frac{\sin(-x)}{\sin(2x)\sin(x)} = 2$$

$$\frac{-\sin(x)}{\sin(2x)\sin(x)} = 2$$

$$\frac{-\sin(x)}{\sin(2x)\sin(x)} = 2$$



There is a turning point on y = f(x) at x = a that touches the x-axis, so y = F(x) will have a stationary point of inflexion at x = a. [A1] There is a maximum turning point on y = f(x) at x = c, so y = F(x) will have a non-stationary point of inflexion at x = c. This is the point of steepest slope on y = F(x) for $a \le x \le d$ [A1] There is an x-intercept on y = f(x) at x = d cutting the x-axis from positive to negative, so y = F(x) will have a local maximum at x = d. [A1]

Total 3 marks

Question 6

$$y = \cot(x)$$

$$y = \frac{\cos(x)}{\sin(x)}$$

$$\frac{dy}{dx} = \frac{\sin(x) \times (-\sin(x)) - \cos(x) \times \cos(x)}{\sin^2(x)}$$

$$= \frac{-(\sin^2(x) + \cos^2(x))}{\sin^2(x)}$$

$$= \frac{-1}{\sin^2(x)}$$

$$= -\cos \sec^2(x)$$
[A1]
Total 2 marks

Question 7

Use implicit differentiation and apply the product rule.

$$5y = 2xy^{2} - 3x$$

$$\frac{d}{dx}(5y) = \frac{d}{dx}(2xy^{2}) - \frac{d}{dx}(3x)$$

$$5\frac{dy}{dx} = \left(y^{2}\frac{d}{dx}(2x) + 2x\frac{d}{dx}(y^{2})\right) - \frac{d}{dx}(3x)$$

$$5\frac{dy}{dx} = \left(2 \times y^{2} + 2x \times 2y \times \frac{dy}{dx}\right) - 3$$
[M1]
$$5\frac{dy}{dx} = 2y^{2} + 4xy\frac{dy}{dx} - 3$$

$$(5 - 4xy)\frac{dy}{dx} = 2y^{2} - 3$$

$$\frac{dy}{dx} = \frac{2y^{2} - 3}{5 - 4xy}$$
[A1]
Total 2 marks

Question 8

$\int \frac{\sqrt{x}}{x+1} dx$	Let $u = \sqrt{x} = x^{\frac{1}{2}}$	hence $x = u^{2}$	2
	$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$		
	$=\frac{1}{2\sqrt{x}}$		
	$=\frac{1}{2\sqrt{x}}$ $=\frac{1}{2u}$		[M 1]
$\int \frac{u}{u+1} 2u \frac{du}{dx} dx$			
$=\int \frac{2u^2}{u^2+1}du$	$\frac{2u^2}{u^2+1} = \frac{(u^2+1)+(u^2+1)}{u^2+1}$	$\frac{u^2+1)-2}{+1}$	Alternatively, perform long division.
	$=2-\frac{2}{u^{2}+1}$		[M1, A1]
$=\int \left(2-\frac{2}{u^2+1}\right) du$			
$= 2u - 2\tan^{-1}(u) + c$ = $2\sqrt{x} - 2\tan^{-1}(\sqrt{x}) + c$			[A 1]
$-2\sqrt{x}-2\tan(\sqrt{x})+c$			[A1] Total 4 marks

Question 9

$\int \frac{1}{1 + \cos(x)} dx$	$\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$	
$=\int \frac{1}{2\cos^2\left(\frac{x}{2}\right)} dx$	$2\cos^2\left(\frac{x}{2}\right) = 1 + \cos(x)$	[M1]
$=\int \frac{1}{2}\sec^2\left(\frac{x}{2}\right)dx$		[A1]
$=\frac{1}{2} \times 2 \tan\left(\frac{x}{2}\right) + c$		
$= \tan\left(\frac{x}{2}\right) + c$		[A1]
		Total 3 marks

Question 10

a.

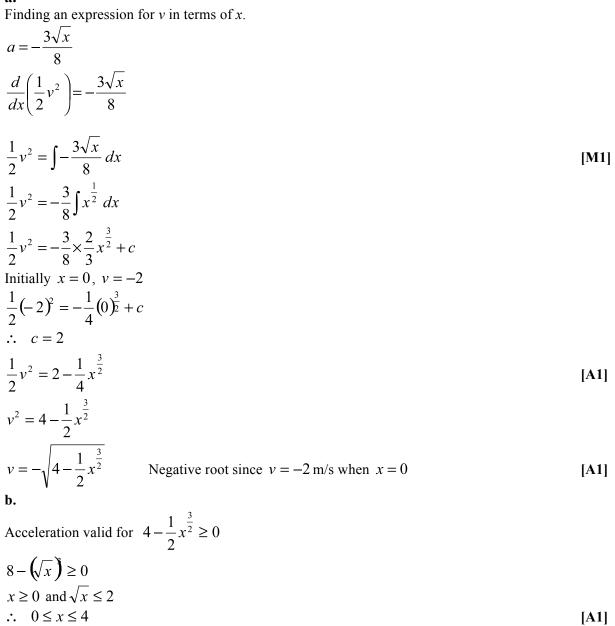
Finding a relationship between the radius and height of the solution in the filter:

 $\tan(60^\circ) = \frac{r}{h} \implies r = \sqrt{3} h \dots (1)$ $V = \frac{1}{3}\pi r^2 h$ Volume of cone: $V = \frac{1}{3}\pi \left(\sqrt{3}h\right)^{2}h$ Substitute (1) $V = \pi h^3 \dots (2)$ [A1] Related rate equation: $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ Given $\frac{dV}{dt} = -8\sqrt{h}$ and from (2) $\frac{dV}{dh} = 3\pi h^2$ $-8\sqrt{h} = 3\pi h^2 \times \frac{dh}{dt}$ $\frac{dh}{dt} = -\frac{8}{3\pi h^{\frac{3}{2}}}$ [A1] $\frac{dh}{dt} = -\frac{8}{3\pi\sqrt{h^3}}$ as required. b. $\frac{dt}{dh} = -\frac{3\pi\sqrt{h^3}}{\circ}$ $t = -\frac{3\pi}{8} \int h^{\frac{3}{2}} dt$ $t = -\frac{3\pi}{8} \times \frac{2}{5} h^{\frac{5}{2}} + c$ $t = -\frac{3\pi}{20}h^{\frac{5}{2}} + c$ [M1] When t = 0, h = 4 $\Rightarrow 0 = -\frac{3\pi}{20} \times (4)^{\frac{5}{2}} + c$ $\Rightarrow c = \frac{3\pi}{20} \times 2^5$ $\Rightarrow c = \frac{24\pi}{5}$

Hence $t = -\frac{3\pi}{20}h^{\frac{5}{2}} + \frac{24\pi}{5}$ Solution will have passed through filter when h = 0 [A1]

$$t = -\frac{3\pi}{20} (0)^{\frac{5}{2}} + \frac{24\pi}{5}$$

$$t = \frac{24\pi}{5}$$
 minutes
The solution will have completely passed through the filter after $\frac{24\pi}{5}$ minutes. [A1]
Total 5 marks
Question 11
a.
Finding an expression for *y* in terms of *x*



Total 4 marks

[A1]