The Mathematical Association of Victoria Trial Exam 2009

SPECIALIST MATHEMATICS

STUDENT NAME		
	Written Examination 1	

Reading time: 15 minutes
Writing time: 2 hours

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
11	11	40

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.

• Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages with a detachable sheet of miscellaneous formulas at the back
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- Write your **name** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer is required to a question.

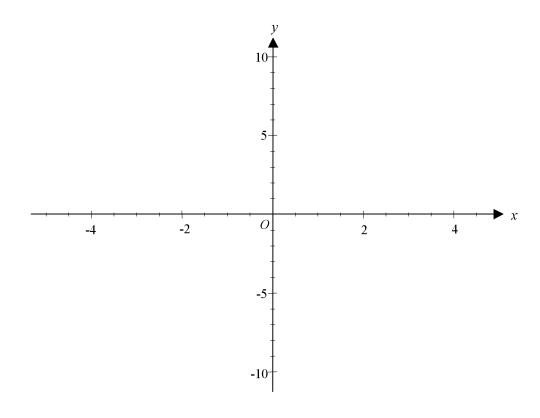
In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g m/s², where g = 9.8

Question 1

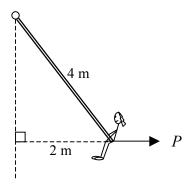
Sketch the graph of $y = \frac{4}{x} - 2x^2$ on the axes below. Give co-ordinates of any intercepts and stationary points. State the equations of all asymptotes.



	5 marks
Question 2	3 marks
a. Show $z = -4$ is a solution to $z^2 + (1 + i\sqrt{2})z + 4i\sqrt{2} - 12 = 0$	
	1 mark
b. Hence or otherwise, find the other solution to $z^2 + (1 + i\sqrt{2})z + 4i\sqrt{2} - 12 = 0$	= 0

Question 3

A girl of mass 24 kg holds onto a rope of length 4 m hanging from a fixed point vertically above. Her father pulls her back 2 m from the vertical as shown in the diagram below. He applies a horizontal force of *P* newtons to momentarily hold her in this position before releasing her from rest to have a swing.



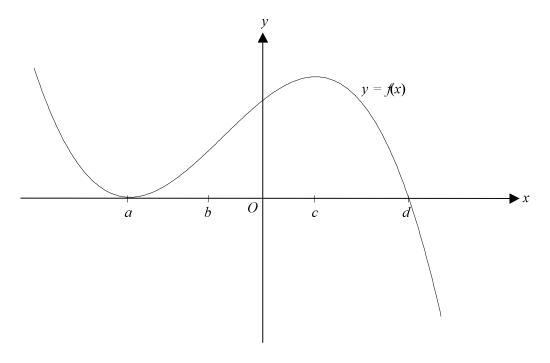
Find the exact horizontal force, P, in newtons, that the father applies.

A	4
Question	4
Question	_

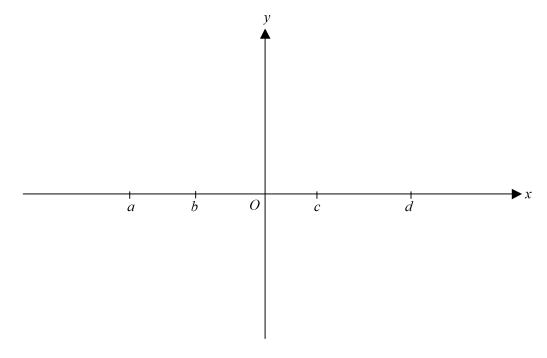
Solve the equation $\cot(2x) - \cot(x) = 2$ for $x \in [-\pi, \pi]$				

Question 5

The following is a graph of y = f(x).



On the axes below, sketch the graph of y = F(x), where F(x) is the antiderivative of f(x), given F(0) = 0.



Find the derivative of $\cot(x)$	
	2 marks
Overtion 7	
Question 7	
Find an expression for $\frac{3}{2}$ in terms of x and y for the relation $5y = 2yy^2 - 3y$	
$\frac{dx}{dx}$	
Find an expression for $\frac{dy}{dx}$ in terms of x and y for the relation $5y = 2xy^2 - 3x$.	
$\frac{dx}{dx}$ in terms of x and y for the relation $\frac{dy}{dx} = \frac{2xy}{dx} = \frac{3x}{dx}$.	
$\frac{dx}{dx}$	
$\frac{dx}{dx}$	
This air expression for $\frac{1}{dx}$ and $\frac{1}{dx}$ for the relation $\frac{1}{2}y = 2xy = 3x$.	
This air expression for $\frac{1}{dx}$ and $\frac{1}{dx}$ for the relation $\frac{1}{3}y = 2xy = 3x$.	
That all expression for $\frac{1}{dx}$ and $\frac{1}{dx}$ for the relation $\frac{1}{3}y = 2xy - 3x$.	
That all expression for $\frac{1}{dx}$ and $\frac{1}{dx}$ for the relation $\frac{1}{3}y = 2xy - 3x$.	
That all expression for $\frac{1}{dx}$ and $\frac{1}{dx}$ is the relation $\frac{1}{3}y = 2xy = 3x$.	
Thic all expression for $\frac{1}{dx}$ and $\frac{1}{dx}$ for the relation $\frac{1}{3}y = 2xy - 3x$.	
Thick all expression for dx	
Thing all expression for $\frac{1}{dx}$ and $\frac{1}{dx}$ is the relation $\frac{1}{3}y - 2xy - 3x$.	

Question	Q
Question	0

Using the substitution $u = \sqrt{x}$, find $\int \frac{\sqrt{x}}{x+1} dx$

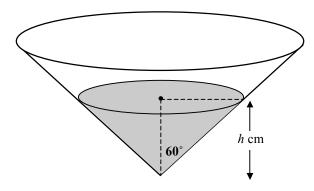
4 marks

Question 9

Find
$$\int \frac{1}{1 + \cos(x)} dx$$

Question 10

A solution is being filtered through filter paper that is folded in the shape of an inverted right circular cone with a semi-vertex angle of 60°. The solution drips from the bottom of the filter at a rate of $8\sqrt{h}$ cm³/min, where h is the height of the solution at time t minutes.



Show that a differential equation which models the rate of change of the height of the solution in the filter at time t minutes is given by $\frac{dh}{dt} = -\frac{8}{3\pi\sqrt{h^3}}$.

b.	Solve the differential equation $\frac{dh}{dt} = -\frac{8}{3\pi\sqrt{h^3}}$ to find the exact time, in minutes, for the solution to completely pass through the filter, given that its initial height was 4 cm.

Question 11

A particle moves in a straight line so that at time t seconds, it is situated x m from a fixed origin, O, moving with a velocity v m/s and an acceleration a m/s², where $a = -\frac{3\sqrt{x}}{8}$, $x \ge 0$. Initially the particle is at the origin moving with a velocity of -2 m/s.

a.	a. Find an expression for the velocity of the particle in terms of its position from O .		
		3 marks	
b.	Determine the values of <i>x</i> for which this acceleration model is valid.		
~*			

1 mark

END OF QUESTION AND ANSWER BOOK

Specialist Mathematics Formulas

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$

curved surface area of a cylinder: $2\pi rh$

volume of a cylinder: $\pi r^2 h$

volume of a cone: $\frac{1}{3}\pi r^2 h$

volume of a pyramid: $\frac{1}{3}Ah$

volume of a sphere: $\frac{4}{3}\pi r^3$

area of a triangle: $\frac{1}{2}bc\sin A$

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^2(x) + \sin^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$

$$\cot^2(x) + 1 = \csc^2(x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
 $\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$

ı	function	\sin^{-1}	\cos^{-1}	tan ⁻¹
ı	domain	[-1, 1]	[-1, 1]	R
	range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \text{Arg } z \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$
 $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$

 $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$$

$$\int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\int \frac{d}{dx} \left(\sin^{-1}(x) \right) = \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\int \frac{d}{dx} \left(\cos^{-1}(x) \right) = \frac{-1}{\sqrt{1 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\int \frac{d}{dx} \left(\tan^{-1}(x) \right) = \frac{1}{1+x^2}$$

$$\int \frac{a}{a^2+x^2} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Euler's method: If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + h f(x_n)$

acceleration:
$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration:
$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

Vectors in two and three dimensions

$$\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}}$$

$$|\overset{\mathbf{r}}{_{\sim}}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt} \dot{\mathbf{i}} + \frac{dy}{dt} \dot{\mathbf{j}} + \frac{dz}{dt} \dot{\mathbf{k}}$$

Mechanics

momentum: p = mv

equation of motion: R = m a

friction: $F \leq \mu N$