SECTION 1: Multiple Choice

ANSWERS					
1. D	2. C	3. E	4. C	5. E	6. A
7. A	8. E	9. A	10. D	11. C	12. D
13. C	14. B	15. D	16. E	17. E	18. B
19. A	20. A	21. C	22. C		

SOLUTIONS

Question 1

 $2x + 3y + 3 = 0 \iff y = -\frac{2}{3}x - 1$

Hence the parallel line will have also a gradient of $-\frac{2}{3}$

1

$$3i-2j$$
 has a gradient of $-\frac{2}{3}$

Question 2

$$(a.b) \stackrel{a}{b} = \stackrel{a}{b}, \text{ hence } (a.b) = 1$$

$$a.\stackrel{a}{\overset{b}{=}} = 1$$
Hence $a.b = |b|$

$$a = i+2j-2k$$

$$b = 2i+mj+3k$$

$$a.b = 2+2m-6$$

$$= -4+2m$$
Hence $|b| = 2m-4$

Answer D

Answer C

 $\frac{4x^2}{b^2} - \frac{(y-3)^2}{a^2} = 1$ $\frac{x^2}{\left(\frac{b}{2}\right)^2} - \frac{(y-3)^2}{a^2} = 1$

Equations of asymptotes: $y-3 = \pm \frac{a}{\left(\frac{b}{a}\right)}x$

$$\begin{pmatrix} 2 \\ y - 3 = \pm \frac{2a}{b}x \end{pmatrix}$$

Hence gradients of asymptotes are $\frac{2a}{b}$ and $-\frac{2a}{b}$ Product of gradients of the asymptotes is $-\frac{4a^2}{b^2}$

Question 4

Consider
$$t \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

 $x \in \left(\tan\left(2 \times \frac{\pi}{3}\right), \tan\left(2 \times \frac{\pi}{2}\right)\right)$ and $y \in \left(\sec\left(2 \times \frac{\pi}{3}\right), \sec\left(2 \times \frac{\pi}{2}\right)\right)$
 $x \in \left(\tan\left(\frac{2\pi}{3}\right), \tan(\pi)\right)$ and $y \in \left(\sec\left(\frac{2\pi}{3}\right), \sec(\pi)\right)$
 $x \in (-\sqrt{3}, 0)$ and $y \in (-2, -1)$

The x and y coordinates are both negative in the third quadrant

Question 5

|z|+|z+i| = 2 is a general form of an ellipse, so answer is E.Alternatively, let z = x + yi|x + yi|+|x + yi+i| = 2|x + yi|+|x + (y+1)i| = 2 $\sqrt{x^2 + y^2} + \sqrt{x^2 + (y+1)^2} = 2$ $\sqrt{x^2 + (y+1)^2} = 2 - \sqrt{x^2 + y^2}$ squaring gives $x^2 + y^2 + 2y + 1 = 4 - 4\sqrt{x^2 + y^2} + x^2 + y^2$ $2y - 3 = -4\sqrt{x^2 + y^2}$ squaring gives $4y^2 - 12y + 9 = 16(x^2 + y^2)$ ©Mathematical Association of Victoria, 2009 Answer E

Answer C

Answer E

Page 2 of 20

 $16x^{2} + 12y^{2} + 12y = 9$ This form is also an ellipse. $16x^{2} + 12(y^{2} + y + \frac{1}{4} - \frac{1}{4}) = 9$ $16x^{2} + 12(y + \frac{1}{2})^{2} - 3 = 9$ $16x^{2} + 12(y + \frac{1}{2})^{2} = 12$ $\frac{4x^{2}}{3} + (y + \frac{1}{2})^{2} = 1$ Ellipse

Question 6

Let
$$z = x + yi$$
 where $x, y \in R^+$
 $\frac{\overline{z}}{i^3} = \frac{x - yi}{i^3}$
 $= \frac{x - yi}{-i}$
 $= \frac{x - yi}{-i} \times \frac{i}{i}$
 $= \frac{xi - yi^2}{1}$
 $= y + xi$
Hence $\frac{\overline{z}}{i^3}$ is also in the first quadrant.

 z_1 is the only complex number shown in the first quadrant.

Question 7

From the graph it can be seen $1\frac{1}{2}$ cycles occurs over 4 units 1 cycle occurs over $\frac{8}{3}$ units Period of $\cot(nx)$ is $\frac{\pi}{n}$ $\frac{\pi}{n} = \frac{8}{3}$ $n = \frac{3\pi}{8}$ Therefore $a = \frac{3\pi}{8}$ Answer A

Answer A

Graph of $y = \arcsin(x)$ or $y = \arccos(x)$ has been dilated parallel to the y-axis by a factor of 2. Eliminate A. It has also been translated horizontally 1 unit left. Eliminate C and D $y = 2 \arcsin(x+1)$ should be translated vertically by π units to give $y = 2 \arcsin(x+1) + \pi$ Eliminate B $y = 2 \arccos(-x-1)$ has domain [-2, 0] and range $[0, 2\pi]$.

This is obtained by reflecting $y = 2 \arccos(x)$ in y-axis: $y = 2 \arccos(-x)$, then translating 1 unit left: $y = 2 \arccos(-(x+1))$. This may be written as $y = 2 \arccos(-x-1)$

Question 9

There is a repeated linear factor: $\frac{2x+1}{(x-9)^2} = \frac{A}{x-9} + \frac{B}{(x-9)^2}$

Partial fractions may be found in the following way (not required):

$$\frac{2x+1}{(x-9)^2} = \frac{A(x-9)}{(x-9)^2} + \frac{B}{(x-9)^2}$$
$$2x+1 = Ax - 9A + B$$

Equating coefficients of x: A = 2 and -9A + B = 1 $-9 \times 2 + B = 1$

$$B = 19 \qquad \therefore \qquad \frac{2x+1}{(x-9)^2} = \frac{2}{x-9} + \frac{19}{(x-9)^2}$$

Question 10

 $\frac{dy}{dx} = f(x) \text{ at } x = m, \text{ given } y = b \text{ when } x = a \text{ is}$ $y = \int f(x) dx$ y = F(x) + c x = a, y = b, b = F(a) + c c = b - F(a) y = F(x) - F(a) + bWhen x = m, y = F(m) - F(a) + bHence $y = \int_{a}^{m} f(x) + b$

Question 11

Let
$$u = 2 - x \implies x = 2 - u$$

 $\frac{du}{dx} = -1 \implies dx = -du$

$$\int (x - 4\sqrt{2 - x}) dx$$
$$= \int ((2 - u) - 4\sqrt{u}) (-du)$$

©Mathematical Association of Victoria, 2009

Answer C

Answer D

Answer E

Answer A

 $= -\int (2 - u - 4\sqrt{u}) du$ $= \int (-2 + u + 4\sqrt{u}) du$ $= \int (u - 2 + 4\sqrt{u}) du$

Question 12

Question 13

$\frac{dy}{dx} = \sin^{-1}(x - 2y)$	
$x_{n+1} = x_n + h$, $h = 0.1$	$y_{n+1} = y_n + hf(x_n, y_n)$, where $f(x_n, y_n) = \frac{dy}{dx}$
2	1
2.1	$1 + 0.1(\sin^{-1}(2 - 2(1))) = 1$
2.2	$1 + 0.1(\sin^{-1}(2.1 - 2(1)) = 1 + 0.1\sin^{-1}(0.1)$

Answer C

Answer D

If
$$\frac{dy}{dx} = \tan(x)$$
, then $y = -\log_e(\cos(x)) + c$ Eliminate A
If $\frac{dy}{dx} = \sec^2(x)$, then $y = \tan(x) + c$. This has asymptotes at $x = \pm \frac{\pi}{2} = \pm 1.57$ Eliminate B
If $\frac{dy}{dx} = |x|$, then $y = \begin{cases} \frac{1}{2}x^2 + c, & x \ge 0\\ -\frac{1}{2}x^2 + c, & x < 0 \end{cases}$ This hybrid function satisfies the field diagram as shown
 $-\frac{1}{2}x^2 + c, & x < 0 \end{cases}$ This hybrid function $\frac{y}{\sqrt{1-\frac{1}{2}x^2}} + \frac{y}{\sqrt{1-\frac{1}{2}x^2}} +$

$$V = \pi \int_{a}^{\frac{\pi}{6}} ([f(x)]^{2} - [g(x)]^{2}) dx \quad \text{where } f(x) = 2\cos(2x), \ g(x) = 1 \text{ and } a = 0$$

Solve $2\cos(2x) = 1$ to find b.
$$\cos(2x) = \frac{1}{2}$$
$$2x = \frac{\pi}{3}$$
$$x = \frac{\pi}{6}$$
$$V = \pi \int_{0}^{\frac{\pi}{6}} ([2\cos(2x)]^{2} - 1^{2}) dx$$
$$V = \pi \int_{0}^{\frac{\pi}{6}} (4\cos^{2}(2x) - 1) dx$$
$$V = \pi \int_{0}^{\frac{\pi}{6}} ([4\cos^{2}(2x) - 2] + 1) dx$$
$$V = \pi \int_{0}^{\frac{\pi}{6}} (2\cos(4x) + 1) dx$$

Question 15

Answer D

Answer **B**

Options A, B and C all mean a is a multiple of b, hence indicating a and b are parallel.

If two vectors a and b are parallel then the angle between the vectors is zero degrees.

Hence $a \cdot b = |a||b|\cos 0$, since $\cos 0 = 1$, then $a \cdot b = |a||b|$ which does not necessarily equal 1. If a and b are unit vectors, then |a||b| does equal 1.

Question 16

 $r(t) = 10t i + (2 + 7t - 4t^{2}) j$ v(t) = 10 i + (7 - 8t) j

When the tennis ball strikes the ground the vertical component of its position is zero. $2 + 7t - 4t^2 = 0$ Solving this quadratic equation gives t = 2v(2) = 10i - 9j Answer E

 $\frac{dy}{dx} = 1 \times e^{\sin(x)} + x \times \cos(x) e^{\sin(x)}$ At $x = 2\pi$, $\frac{dy}{dx} = 1 \times e^{\sin(2\pi)} + 2\pi \times \cos(2\pi) e^{\sin(2\pi)}$ $\frac{dy}{dx} = 1 + 2\pi$

Applying chain rule for a related rate

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
$$\frac{dy}{dt} = (2\pi + 1) \times 2$$
$$\frac{dy}{dt} = 4\pi + 2 \text{ cm/s}$$

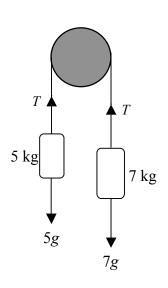
Question 18

Cyclist is travelling with constant acceleration u = 1, a = 2, s = 56

v² = u² + 2as $v² = 1² + 2 \times 2 \times 56$ v² = 225v = 15 m/s

Change in velocity = 15 - 1 = 14 m/s

Change in momentum = mass × change in velocity = 60 × 14 = 840 kg m/s


Question 19

The 7 kg mass will accelerate downwards. Equation of motion for 7 kg mass: 7g - T = 7a $T = 7g - 7a \dots (1)$

The 5 kg mass will accelerate upwards. Equation of motion for 5 kg mass:

T-5g = 5a $T = 5a + 5g \dots (2)$ Equate (1) and (2) 5a + 5g = 7g - 7a

©Mathematical Association of Victoria, 2009

Answer **B**

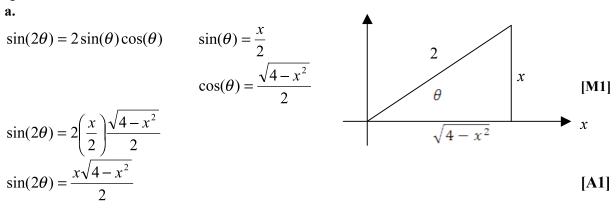
Page 7 of 20

Answer E

12a = 2g
$a = \frac{g}{6} \text{ m/s}^2$
Question 20
$\frac{dv}{dt} = -\frac{4}{v}$
$\frac{dt}{dv} = -\frac{v}{4}$
dv = 4
$t = \int -\frac{v}{4} dv$
$t = -\frac{v^2}{8} + c$
$t = 0, v = -4 \Longrightarrow c = 2$
$t = -\frac{v^2}{8} + 2$
$t-2 = -\frac{v^2}{8}$
$16 - 8t = v^2$
$v = \pm \sqrt{16 - 8t}$
Therefore $v = -\sqrt{4(4-2t)}$, since when $t = 0, v = -4$
$v = -2\sqrt{(4-2t)}$

R = ma , hence 2a = 3 + 2t $a = \frac{3}{2} + t$ $\frac{dv}{dt} = \frac{3}{2} + t$ $v = \frac{3}{2}t + \frac{t^2}{2} + c$ t = 0, v = 0 , hence c = 0When $t = 4, v = \frac{3}{2}(4) + \frac{16}{2}$ = 14 m/s

Answer A


Answer D

 $N = 5g \cos(30^{\circ})$ $5g \sin(30^{\circ}) - F = 5 \times 2$ $F = 5g \sin(30^{\circ}) - 10$ $F = \mu N = \mu \times 5g \cos(30^{\circ})$ Equating $\mu \times 5g \frac{\sqrt{3}}{2} = \frac{5g}{2} - 10$ multiply by $\frac{2}{5}$ $\mu \times g\sqrt{3} = g - 4$ $\mu = \frac{g - 4}{g\sqrt{3}}$ $\mu = 0.34$ (correct to 2 decimal places)

y

SECTION 2

b.

$$\int \sqrt{4 - x^2} dx \qquad \text{Let } x = 2\sin(\theta), \ \frac{dx}{d\theta} = 2\cos(\theta)$$

$$= \int \sqrt{4 - 4\sin^2(\theta)} (2\cos(\theta)) \frac{d\theta}{dx} dx \qquad [M1]$$

$$= \int \sqrt{4(1 - \sin^{2}(\theta)(2\cos(\theta))d\theta}$$

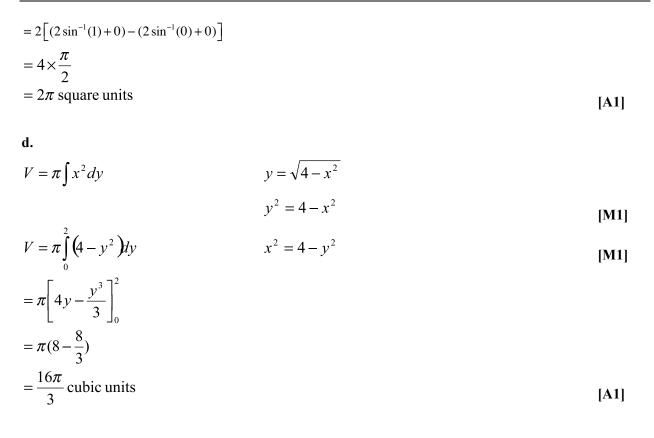
= $\int (2\cos(\theta))(2\cos(\theta))d\theta$
= $\int 4\cos^{2}(\theta) d\theta$ [A1]

$$= \int 4 \times \frac{1}{2} (1 + \cos(\theta)) d\theta$$

= $2 \int (1 + \cos(\theta)) d\theta$ [M1]

$$= 2\left(\theta + \frac{1}{2}\sin(2\theta)\right) + c \qquad \text{but } \sin(\theta) = \frac{x}{2} \text{ and from (a)} \sin(2\theta) = \frac{x\sqrt{4-x^2}}{2} \qquad [A1]$$
$$= 2\sin^{-1}\left(\frac{x}{2}\right) + \frac{x}{2}\sqrt{4-x^2} + c$$

c.

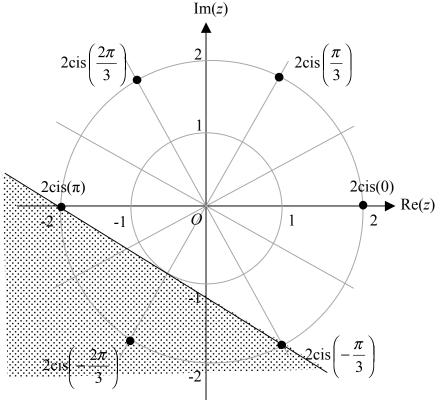

$$\int_{-2}^{2} \sqrt{4 - x^{2}} dx$$
[M1]

$$= 2 \int_{0}^{2} \sqrt{4 - x^{2}} dx$$

$$= 2 \left[2 \sin^{-1} \left(\frac{x}{2} \right) + \frac{x}{2} \sqrt{4 - x^{2}} \right]_{0}^{2}$$
[M1]

©Mathematical Association of Victoria, 2009

Page 10 of 20



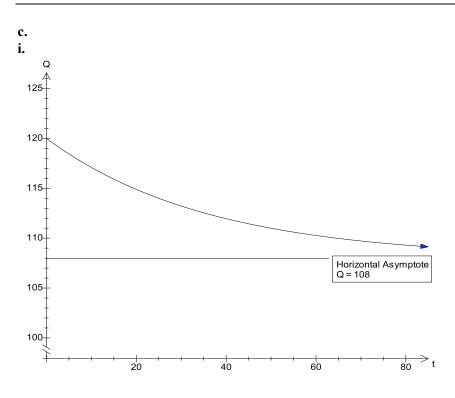
Total 12 marks

a. i. $z^{6} = 64 + 0i$ $z^{6} = 64 \operatorname{cis}(0)$ $z = (64 \operatorname{cis}(0))^{\frac{1}{6}}$ [A1] $z = 2 \operatorname{cis}\left(\frac{1}{6}(0 + 2k\pi)\right)$ [M1] $z = 2 \operatorname{cis}\left(\frac{k\pi}{3}\right)$ $k = 0, \pm 1, \pm 2, 3$ Solutions are: $2 \operatorname{cis}\left(-\frac{2\pi}{3}\right), 2 \operatorname{cis}\left(-\frac{\pi}{3}\right), 2 \operatorname{cis}(0), 2 \operatorname{cis}\left(\frac{\pi}{3}\right), 2 \operatorname{cis}\left(\frac{2\pi}{3}\right), 2 \operatorname{cis}(\pi)$ [A1]

ii.

The solutions to $z^6 - 64 = 0$ will be equally spaced around the circumference of circle |z| = 2 as shown.

Solutions plotted [A1]


b.		
i.	$\left \begin{array}{c} z+1+\sqrt{3} \ i \end{array} \right \leq \left \begin{array}{c} z \end{array} \right $	
	$\sqrt{(x+1)^2 + (y+\sqrt{3})^2} \le \sqrt{x^2 + y^2}$	[M1]
	$x^{2} + 2x + 1 + y^{2} + 2\sqrt{3}y + 3 \le x^{2} + y^{2}$	
	$2\sqrt{3}y \le -2x - 4$	
	$y \le -\frac{1}{\sqrt{3}}x - \frac{2}{\sqrt{3}}$	
	$y \le -\frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$	[A1]
ii.	Sketch line $y = -\frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$	
	x-intercept, $y = 0$ y-intercept, $x = 0$	
	$0 = -\frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3} \qquad \qquad y = -\frac{2\sqrt{3}}{3}$	
	$\frac{\sqrt{3}}{3}x = -\frac{2\sqrt{3}}{3}$ line sketched	[A1]
	$\begin{array}{c}3 \\ x = -2\end{array}$	
	For the region $y \le -\frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$,	
	Test point – select (0, 0) $0 \le -\frac{\sqrt{3}}{3} \times 0 - \frac{2\sqrt{3}}{3}$ False	
	The required region is on and below the line. Shown on diagram for part a. iii.	[A1]
	Shown on diagram for part a. m.	
iii.	From graph, the solution to $z^6 - 64 = 0$ which clearly lies in region $y < -\frac{\sqrt{3}}{3}x - \frac{2}{3}x - \frac{2}{3$	$\frac{2\sqrt{3}}{3}$ is:
	$z = 2\operatorname{cis}\left(-\frac{2\pi}{3}\right) = 2\left(\cos\left(-\frac{2\pi}{3}\right) + \sin\left(-\frac{2\pi}{3}\right)i\right) = 2\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -1 - \sqrt{3}i$	
	The solutions on the line $y = -\frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$ are:	
	$z = 2\operatorname{cis}\left(-\frac{\pi}{3}\right) = 1 - \sqrt{3} i$ and $z = 2\operatorname{cis}(\pi) = -2 + 0i$	
	Hence in Cartesian form $\{z : z+1+\sqrt{3}i \le z \} \cap \{z : z^6 - 64 = 0\}$ is	
	$\{z: z = -2 + 0i, -1 - \sqrt{3}i, 1 - \sqrt{3}i\}$	FA 40
	One correct solution (polar or Cartesian form) All correct solutions in Cartesian form Total 1	[A1] [A1] 0 marks

Page 13 of 20

a.	
$\frac{\mathrm{dQ}}{\mathrm{dt}} = \frac{\mathrm{dQ}}{\mathrm{dt}}_{\mathrm{IN}} - \frac{\mathrm{dQ}}{\mathrm{dt}}_{\mathrm{OUT}}$	
$\frac{\mathrm{dQ}}{\mathrm{dt}} = \frac{dV}{dt}\frac{dQ}{dV_{\mathrm{IN}}} - \frac{dV}{dt}\frac{dQ}{dV_{\mathrm{OUT}}}$	0.411
	[M1]
$\frac{\mathrm{dQ}}{\mathrm{dt}} = 3 - 5 \times \frac{Q}{180}$	
$\frac{\mathrm{dQ}}{\mathrm{dt}} = 3 - \frac{Q}{36}$	
$\frac{\mathrm{dQ}}{\mathrm{dt}} = \frac{108 - Q}{36}$	[A1]
$\frac{\mathrm{dQ}}{\mathrm{dt}} = -\frac{Q - 108}{36}$	
b. i.	
$\frac{\mathrm{dt}}{\mathrm{dQ}} = -\frac{36}{Q - 108}$	
$t = \int -\frac{36}{O - 108} dt$	
$t = -36\log_e Q - 108 + c$	[M1]
$t = 0, Q = 120$, hence $0 = -36 \log_e 120 - 108 + c$	
$c = 36 \log_e 12$	
$t = 36 \log_{e} \left \frac{12}{O - 108} \right $	[M1]
	[1411]
$\frac{t}{36} = \log_e \left \frac{12}{Q - 108} \right $	
$\frac{1}{36} - \frac{10}{Q} = \frac{10}{Q} $	
$\frac{t}{36} - 12$	
$e^{\frac{t}{36}} = \frac{12}{Q - 108}$	
$Q - 108 = 12e^{-\frac{t}{36}}$	
$Q = 12e^{-\frac{t}{36}} + 108$	[A1]
ii.	
When Q = 115, $t = 36 \log_e \left \frac{12}{115 - 108} \right $	
113 - 100	[A 1]

[A1]

MAV Trial Examination Papers 2009 Specialist Examination 2 SOLUTIONS

Shape [A1] y-intercept, asymptote [A1]

ii. As $t \to \infty$, $e^{\frac{t}{36}} \to 0$, hence the quantity of green paint stabilizes to 108 litres. [M1] Hence the quantity of red paint stabilizes to 180 - 108 = 72 litres. [A1]

Total 10 marks

a.

$$\underline{r}(t) = (1 + 3\cos(\pi t))\underline{i} + 3\sin(\pi t) \underline{j} + 5\underline{k}$$

 $\underline{\dot{r}}(t) = -3\pi \sin(\pi t) \underline{i} + 3\pi \cos(\pi t) \underline{j}$ [A1]
Initial position: $\underline{r}(0) = 4\underline{i} + 5\underline{k}$ [A1]
Initial velocity: $\underline{\dot{r}}(0) = 3\pi \underline{j}$
Initial speed = 3π m/s [A1]
b.
i.
 $x = 1 + 3\cos(\pi t), \quad y = 3\sin(\pi t)$ [M1]
 $\frac{x - 1}{3} = \cos(\pi t), \quad \frac{y}{3} = \sin(\pi t)$
Since $\sin^2(\pi t) + \cos^2(\pi t) = 1, \quad \frac{(x - 1)^2}{9} + \frac{y^2}{9} = 1$ [A1]

$$(x-1)^2 + y^2 = 9$$

Domain: Since $x = 1 + 3\cos(\pi t)$ and $-1 \le \cos(\pi t) \le 1$, then $-2 \le x \le 4$ [A1]

ii. The plane moves anticlockwise in a circular path of radius 3 metres, at a height of 5 metres above the ground. The centre of the circle, *O*, is one metre from Angela. [A2]

c.

$$\dot{r}(t) = -3\pi \sin(\pi t) \, \underline{i} + 3\pi \cos(\pi t) \, \underline{j}$$

 $\ddot{r}(t) = -3\pi^2 \cos(\pi t) \, \underline{i} - 3\pi^2 \sin(\pi t) \, \underline{j}$
[A1]
 $\dot{r}(t) = -3\pi^2 \sin(\pi t) \, \underline{i} - 3\pi^2 \sin(\pi t) \, \underline{j}$

$$\dot{r}(t).\ddot{r}(t) = 9\pi^3 \sin(\pi t) \cos(\pi t) - 9\pi^3 \sin(\pi t) \cos(\pi t)$$
[M1]

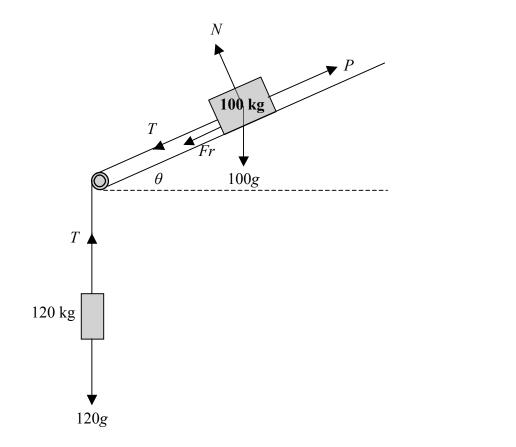
 $\dot{r}(t)$. $\ddot{r}(t) = 0$ hence the acceleration is perpendicular to the velocity

d.

i.
$$\dot{r}(12) = 3\pi j$$
 [A1]

d.	
ii.	
$\ddot{r}(t) = -9.8k$	
$\dot{r} = -9.8 t \dot{k} + \dot{c}$	[A1]
$\dot{c}(0) = 3\pi j$, hence $\dot{c} = 3\pi j$	
$\dot{r} = 3\pi j - 9.8 t k$	[A1]

Total 12 marks


a.

 ${\it N}$ is the normal reaction of the plane

T is the tension in the rope

Fr is the frictional force on the inclined plane acting to oppose motion

100g and 120g are the weight forces of the 100 kg mass and the 120 kg mass respectively

b.

Resolving forces around the 100 kg mass perpendicular to the plane to find N.

$$N = mg \cos(\theta) N = 100g \times 0.8 N = 80g$$

$$\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - (0.6)^2} = 0.8 [A1]$$

$$Fr = \mu N$$

$$Fr = 0.25 \times 80g$$

$$Fr = 20g \text{ newtons}$$
[A1]

c.

Resolving forces vertically around the 120 kg mass Equation of motion:

©Mathematical Association of Victoria, 2009

[A1]

 $T - 120g = 120a \dots (1)$ T - 120g = 0 Since the mass is on the point of moving upwards a = 0 T = 120g newtons [A1] Resolving forces parallel to the plane around the 100 kg mass. Equation of motion: $P - 100g \sin(\theta) - T - Fr = 100a$ $P - 100g \times \frac{3}{5} - T - 20g = 100a$ $P - T - 80g = 100a \dots (2)$ $P - T - 80g = 100 \times 0$ P = 80g + T P = 80g + 120gP = 120g newtons [A1]

d.

From (1)	T = 120a + 120g	
Substituting P	and T into (2)	
(55t+200g)-	-(120a+120g)-80g=100a	[M1]
55t + 200g - 2	200g = 220a	
220 a = 55 t		[A1]
$a = \frac{t}{4} \text{ m/s}^2$		

e.

i.

Use integration to find velocity and displacement when the force is variable

$$v = \int \frac{t}{4} dt$$

$$v = \frac{1}{8}t^{2} + c$$
When $t = 0, v = 0, \Rightarrow c = 0$

$$\therefore v = \frac{1}{8}t^{2}$$
When $t = 4, v = \frac{1}{8} \times 4^{2} = 2 \text{ m/s}$
[A1]

The system is travelling at 2 m/s at 4 seconds.

ii.

Finding the distance travelled over $0 \le t \le 4$

$$x = \int \frac{1}{8}t^2 dt$$

©Mathematical Association of Victoria, 2009

$$x = \frac{1}{24}t^{3} + c,$$

When $t = 0, x = 0, \Rightarrow c = 0$
$$\therefore x = \frac{1}{24}t^{3}$$

When $t = 4, x = \frac{1}{24} \times 4^{3} = 2\frac{2}{3}$ m
After 4 seconds the 120 kg mass has risen $2\frac{2}{3}$ m.

er 4 seconds the 120 kg mass has risen $2\frac{2}{3}$ m. [A1]

The system is moving under constant acceleration for the 2 seconds between $4 < t \le 6$

$$s = ut + \frac{1}{2}at^{2} \qquad a = 1, u = 2, t = 2$$

$$s = 2 \times 2 + \frac{1}{2} \times 1 \times 2^{2}$$

$$s = 6 \text{ m}$$

The mass rises 6 m between $4 < t \le 6$ seconds

[A1]

Finding the velocity of the system after 6 seconds.

v = u + at $v = 2 + 1 \times 2$ v = 4 m/s

For
$$6 < t \le 12$$
 seconds $a = 4 - \frac{t}{2}$ m/s²
 $v = \int \left(4 - \frac{t}{2}\right) dt$
 $v = 4t - \frac{1}{4}t^2 + c$
When $t = 6$, $v = 4 \implies 4 = 4 \times 6 - \frac{1}{4} \times 6^2 + c$, $c = -11$

:.
$$v = 4t - \frac{1}{4}t^2 - 11$$
 [A1]

Vertical distance travelled over $6 < t \le 12$

$$= \int_{6}^{12} \left(4t - \frac{1}{4}t^2 - 11 \right) dt = 24 \text{ m}$$
 [A1]

Total height the 120 kg mass rises in 12 seconds $= 2\frac{2}{3} + 6 + 24 = 32\frac{2}{3}$ metres [A1]

Total 14 marks

©Mathematical Association of Victoria, 2009

Page 20 of 20