•••	••••		:::			
 •••		 	 ••••	••••		

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2010

Trial Examination 1

Instructions

Answer all questions. Do not use calculators.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1

Find all solutions to the equation $4z^3 - i2\sqrt{3}z^2 - 3z = 0$, $z \in C$. 3 marks

Question 2 Find $\{z: |z+4|+|z-3\sqrt{3}|=11\} \cap \{z: \operatorname{Re}(z)=0\}, z \in C$.

Question 3

The position of a particle in circular motion is given by $\tilde{r} = -3\tilde{i} + 3\cos\frac{t}{10}\tilde{j} - 3\sin\frac{t}{10}\tilde{k}$, where time *t* is measured in seconds and distance is in metres.

- **a.** What is the exact time taken to complete one turn?
- **b.** Find the exact value of the particle's speed.

1 mark

2 marks

A particle travels in a straight line with a constant acceleration of $^{-3}$ ms⁻². It starts at $x=^{-2}$ m with a velocity of $^{+8.5}$ ms⁻¹. Find the time when the particle passes $x=^{+3}$ m in the direction opposite to its initial velocity.

3 marks

Question 5

Find the magnitude of force F (newtons) required to keep the 100-kg mass in equilibrium.

The graphs of f(x) and g(x) are shown below.

a. On the same set of axes accurately sketch the graph of h(x) = f(x) - g(x). 3 marks

b. Determine the equation of each asymptote of h(x).

a. Prove that $\frac{1}{1-\sin x} = \sec x(\sec x + \tan x).$

2 marks

b. Hence evaluate the exact value of $\int_{0}^{\frac{\pi}{3}} \frac{1}{1-\sin x} dx.$

3 marks

Question 8

a. Find the exact area bounded by the graph of $y = \sin^{-1} x$ and the y-axis.

3 marks

b. Hence or otherwise, find the exact area bounded by the graph of $y = 2\sin^{-1}(2x) + \pi$ and the *y*-axis.

PQRS is a rigid rectangular sheet of metal of negligible thickness.

p, q, r and s are respectively the *perpendicular* distances of P, Q, R and S from a flat surface.

a. Given that the diagonals of the rectangular metal sheet bisect each other, show that $\overrightarrow{OP} + \overrightarrow{OR} = \overrightarrow{OQ} + \overrightarrow{OS}$, where *O* is a point on the flat surface.

2 marks

b. *Hence* show that p + r = q + s.

The graph of $(x^2 + y^2)^2 = x^2 - y^2$ is shown below.

a. Find $\frac{dy}{dx}$ in terms of x and y.

3 marks

b. Find the exact coordinates of the points on the graph at which the tangents are horizontal. 2 marks

End of Exam 1