The Mathematical Association of Victoria

SPECIALIST MATHEMATICS

Trial Written Examination 1

2010

Reading time: 15 minutes Writing time: 1 hour

Student's Name	
Stadelle Si valle	

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students are NOT permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

THIS PAGE IS BLANK

Instructions
Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude g m/s ² , where $g = 9.8$
Question 1 Find the gradient of the curve $3x^2 + 4y^2 = 48$ at the points where $x = 2$.

3 marks

TURN OVER

Ou	estion	ւ 2

If
$$y = \arcsin(2x)$$
, find $\frac{d^2y}{dx^2}$

3 marks

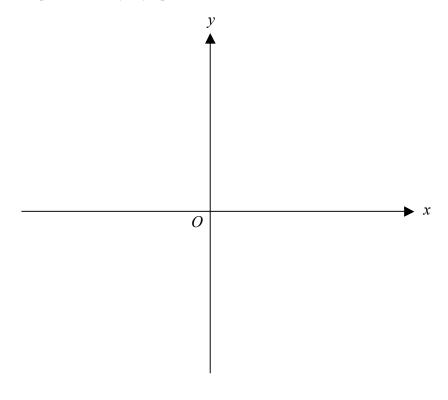
Question 3

Given $\tan(2\theta) = \sqrt{3}$, where $\theta \in \left(-\pi, -\frac{\pi}{2}\right)$, find $\operatorname{cis}(\theta)$ in Cartesian form.

4 marks

Question 4

a.	Find the square roots of $-2 + 2\sqrt{3}i$, expressing your answer in Cartesian form.	
		3 marks
b.	Hence, find all solutions to $\{z: z^2 + (\sqrt{3} - i)z + (1 - \sqrt{3}i) = 0\}$ in Cartesian form.	


3 marks

TURN OVER

Question 5

Sketch the graph of $y = \frac{x^3 - 1}{x}$ on the axes below.

Include the coordinates of any intercepts, stationary points and points of inflexion that may exist. Write down the equations of any asymptotes to the curve.

5 marks

Question	6
Question	o

	<u>π</u>
Find the value of m such that	$\int_{m}^{2} \sec^{2}\left(\frac{x}{2}\right) dx = \frac{2}{3}\left(3 - \sqrt{3}\right)$

3 marks

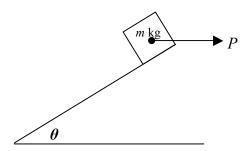
Question 7

Find
$$\int \frac{x}{\sqrt[3]{3x^2+1}} dx$$

3 marks

\sim	4 •	•
()	HACTIAN	×
v	uestion	U

Question o
A particle moves from rest at the origin, O , with an acceleration of $v^3 + \pi^2 v$ m/s ² where v is the particle's velocity measured in m/s.
Find the velocity of the particle when it is 0.25 m to the right of O .


On	estion	Q
Qu	estion	7

Question 5
The positions of two particles, A and B , at any time t seconds are given by the vectors $\underline{r}_{A}(t) = (t^2 + 1)\underline{i} + 2t\underline{j}$ and $\underline{r}_{B}(t) = (7t - 5)\underline{i} + (t + 6)\underline{j}$, $t \ge 0$.
Find the coordinates of any points at which the paths of the particles will meet.
Determine whether a collision will take place. Justify your response.

5 marks **TURN OVER**

Question 10

A box of mass m kg is prevented from sliding down a smooth plane inclinded at an angle of θ to the horizontal level by a horizontal force of P newtons as shown in the diagram below.

Show that the reaction force, in newtons, of the inclined plane on the box is given by $N = mg \sec(\theta)$.

4 marks

END OF QUESTION AND ANSWER BOOK

Specialist Mathematics Formulas

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$

curved surface area of a cylinder: $2\pi rh$

volume of a cylinder: $\pi r^2 h$

volume of a cone: $\frac{1}{3}\pi r^2 h$

volume of a pyramid: $\frac{1}{3}Ah$

volume of a sphere: $\frac{4}{3}\pi r^3$

area of a triangle: $\frac{1}{2}bc\sin A$

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^2(x) + \sin^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$

$$\cot^2(x) + 1 = \csc^2(x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
 $\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$

ı	function	\sin^{-1}	\cos^{-1}	tan ⁻¹
ı	domain	[-1, 1]	[-1, 1]	R
	range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \text{Arg } z \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$
 $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$

 $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$$

$$\int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\int \frac{d}{dx} \left(\sin^{-1}(x) \right) = \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\int \frac{d}{dx} \left(\cos^{-1}(x) \right) = \frac{-1}{\sqrt{1 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\int \frac{d}{dx} \left(\tan^{-1}(x) \right) = \frac{1}{1+x^2}$$

$$\int \frac{a}{a^2+x^2} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Euler's method: If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$

acceleration:
$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration:
$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

Vectors in two and three dimensions

$$\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}}$$

$$|\overset{\mathbf{r}}{_{\sim}}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt} \dot{\mathbf{i}} + \frac{dy}{dt} \dot{\mathbf{j}} + \frac{dz}{dt} \dot{\mathbf{k}}$$

Mechanics

momentum: p = mv

equation of motion: R = m a

friction: $F \leq \mu N$