

THE SCHOOL FOR EXCELLENCE UNIT 3 & 4 SPECIALIST MATHEMATICS 2010 COMPLIMENTARY WRITTEN EXAMINATION 1 - SOLUTIONS

PRINTING SPECIFICATIONS

Please ensure that the paper size on your printer is selected as A4 and that you select "None" under "Page Scaling".

ERRORS AND UPDATES

Please report errors by email (admin@tsfx.com.au).

Errors and updates relating to this examination paper will be posted at <u>www.tsfx.com.au/vic/examupdates</u>

MARKING SCHEME

- (A4× $\frac{1}{2}$ ↓) means four answer half-marks rounded **down** to the next integer. Rounding occurs at the end of a part of a question.
- **M1** = 1 **M**ethod mark.
- A1 = 1 Answer mark (it **must** be this or its equivalent).
- **H1** = 1 consequential mark (**H**is/**H**er mark...correct answer from incorrect statement or slip).

(a)
$$u = e^x \therefore du = e^x dx, \ u^2 = e^{2x}$$

If $x = 0, \ \therefore u = 1$ and if $x = \ln 3, \ \therefore u = 3$
M1

$$\therefore \int_{0}^{\ln 3} \frac{e^{x}}{e^{2x} + 9} dx = \int_{1}^{3} \frac{du}{u^{2} + 9}$$
(b)
$$\int_{1}^{3} \frac{du}{u^{2} + 9} = \left[\frac{1}{3} \tan^{-1}\left(\frac{u}{3}\right)\right]_{1}^{3}$$

$$= \left(\frac{1}{3} \tan^{-1} 1\right) - \left(\frac{1}{3} \tan^{-1} \frac{1}{3}\right)$$

$$= \frac{1}{3} \times \frac{\pi}{4} - \frac{1}{3} \tan^{-1}\left(\frac{1}{3}\right)$$

$$= \frac{\pi - 4 \tan^{-1}\left(\frac{1}{3}\right)}{12}$$
 as required. M1

(a) $\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ}, \quad \overrightarrow{RP} = \overrightarrow{OP} - \overrightarrow{OR}$ A1 (b) $\overrightarrow{OP} \perp \overrightarrow{QR} \therefore \overrightarrow{OP} \bullet \overrightarrow{QR} = 0$ $\therefore \overrightarrow{OP} \bullet (\overrightarrow{OR} - \overrightarrow{OQ}) = 0$ $\therefore \overrightarrow{OP} \bullet \overrightarrow{OR} = \overrightarrow{OP} \bullet \overrightarrow{OQ}$ M1 $\overrightarrow{OQ} \perp \overrightarrow{RP} \therefore \overrightarrow{OQ} \bullet \overrightarrow{RP} = 0$ $\therefore \overrightarrow{OQ} \bullet (\overrightarrow{OP} - \overrightarrow{OR}) = 0$ $\therefore \overrightarrow{OQ} \bullet \overrightarrow{OP} = \overrightarrow{OQ} \bullet \overrightarrow{OR}$ M1 $\therefore \overrightarrow{OP} \bullet \overrightarrow{OR} = \overrightarrow{OQ} \bullet \overrightarrow{OR}$ M1

Therefore
$$\overrightarrow{OR}$$
 perpendicular to \overrightarrow{QP} , as required.

M1

Total = 4 marks

QUESTION 2

 $\therefore \overrightarrow{OR} \bullet \overrightarrow{QP} = 0$

(a)
$$x = 1 \therefore e^{y} - y^{2} \log_{e} 1 = e$$

 $\therefore e^{y} = e$
 $\therefore y = 1$
 $\therefore a = 1$

A1

(b)

$$\frac{d}{dx}(e^{xy}) = e^{xy}\left(x\frac{dy}{dx} + y\right)$$

$$\frac{d}{dx}(y^2 \log_e x) = \frac{y^2}{x} + 2y\frac{dy}{dx}\log_e x$$

$$\frac{d}{dx}(e) = 0$$

$$\therefore e^{xy}\left(x\frac{dy}{dx} + y\right) - \frac{y^2}{x} - 2y\frac{dy}{dx}\log_e x = 0$$
M1

Substitute x = 1 and y = 1:

$$e\left(\frac{dy}{dx}+1\right)-1=0$$
M1
$$\frac{dy}{dx}+1=\frac{1}{e}$$

$$\frac{dy}{dx}=\frac{1}{e}-1$$

A1

Total = 4 marks

(a)

$$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{2x}{x^2 + 1}$$

$$\frac{1}{2}v^2 = \int \frac{2x}{x^2 + 1} dx = \ln|x^2 + 1| + c$$
M1

Substitute v = 2, $x = 1 \therefore 2 = \ln 2 + c \therefore c = 2 - \ln 2$

$$\therefore \frac{1}{2}v^{2} = \ln |x^{2} + 1| - \ln 2 + 2$$

$$\therefore v^{2} = 2 + \ln \left| \frac{x^{2} + 1}{2} \right|$$

$$\therefore v = \sqrt{2 + \ln \left| \frac{x^{2} + 1}{2} \right|}$$

Positive root only since velocity must be positive . A1

(b)
$$x = 5$$
 : $v = \sqrt{2 + \ln 13}$
Therefore $a = 13$ and $b = 2$.

Total = 4 marks

M1

QUESTION 5

(a)
$$z = \frac{1}{2} cis(\frac{2\pi}{3}) = \frac{1}{2} (\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}))$$

 $w = \frac{1}{2} cis(\frac{\pi}{4}) = \frac{1}{2} (\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$
A2

(b)
$$zw = \frac{1}{2} \times \frac{1}{2} \times cis(\frac{2\pi}{3} + \frac{\pi}{4}) = \frac{1}{4}cis(\frac{11\pi}{12}) = \frac{1}{4}(\cos(\frac{11\pi}{12}) + i\sin(\frac{11\pi}{12}))$$
 M1

(c) (i)
$$zw = \frac{(-1+i\sqrt{3})(\sqrt{2}+i\sqrt{2})}{16} = \frac{-\sqrt{2}-i\sqrt{2}+i\sqrt{6}-\sqrt{6}}{16} = \left(\frac{-\sqrt{2}-\sqrt{6}}{16}\right) + i\left(\frac{\sqrt{6}-\sqrt{2}}{16}\right)$$

(ii) $\cos\left(\frac{11\pi}{12}\right) = \frac{-\sqrt{2}-\sqrt{6}}{4}$ and $\sin\left(\frac{11\pi}{12}\right) = \frac{-\sqrt{2}+\sqrt{6}}{4}$ A1

Total = 5 marks

(a)
$$\frac{dx}{dt} = -60kmh^{-1}$$

$$\frac{dy}{dt} = -70kmh^{-1}$$
A1

(b)
$$z^2 = x^2 + y^2$$
, $x = 0.8$ and $y = 0.6$ $\therefore z = 1$ M1

$$2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}$$
 M1

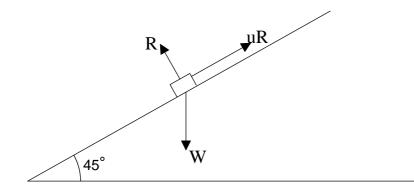
$$z\frac{dz}{dt} = x\frac{dx}{dt} + y\frac{dy}{dt}$$
$$\frac{dz}{dt} = 0.8 \times (-60) + 0.6 \times (-70) = -90kmh^{-1}$$

Therefore z is decreasing at the rate of 90 kmh^{-1} .

Total = 4 marks

QUESTION 7

(a)



A1

A1

(b) Resolving parallel to plane: $W \sin 45^\circ - \mu R = 0$ $\therefore W \sin 45^\circ = \mu R$ Resolving perpendicular to plane: $R - W \cos 45^\circ = 0$ $\therefore R = W \cos 45^\circ$

$$W \sin 45^{\circ} = \mu W \cos 45^{\circ}$$

$$\mu = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = 1$$
A1

(c) (i) $\mu R = 1 \times 2g = 19.6 \text{ Newtons}$ but only require friction of 9.8 Newtons to stop the motion. Therefore friction = 9.8 Newtons South.

(d) $\Sigma \vec{F} = m\vec{a} \therefore 29.4 - 19.6 = 2a \therefore a = 4.9ms^{-2}$ \therefore uniform acceleration, $v^2 = u^2 + 2as, u = 0, v = 7, a = 4.9$ $\therefore s = \frac{49}{9.8} = 5$ metres

Therefore object travels 5 metres.

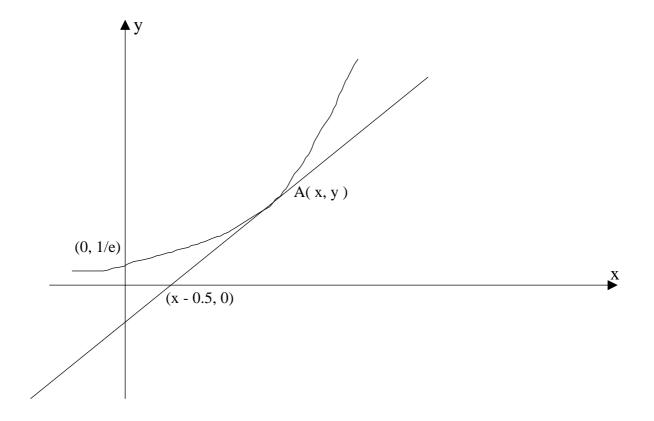
A1

Total = 5 marks

QUESTION 8

 $r = xi + yj \therefore v = \frac{dx}{dt}i + \frac{dy}{dt}j$ $\frac{dx}{dt} = \frac{1}{3}, \frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = (6x - 3x^2) \times \frac{1}{3} = 2x - x^2$ If velocity is horizontal, then $\frac{dy}{dt} = 0$. $\therefore 2x - x^2 = 0$ $\therefore x(2 - x) = 0$ $\therefore x = 0 \text{ or } x = 2$ M1 $v = \frac{1}{3}i + (2x - x^2)j$ $\therefore a = \frac{dv}{dt} = 0i + \frac{d}{dt}(2x - x^2)j = \frac{d}{dx}(2x - x^2) \times \frac{dx}{dt}j = (2 - 2x) \times \frac{1}{3}j = (\frac{2}{3} - \frac{2x}{3})j$ If x = 0, then $a = \frac{2}{3}j$ If x = 2, then $a = -\frac{2}{3}j$ A1

Total = 3 marks



Gradient of tangent is
$$\frac{y}{\frac{y}{2}} = 2y = \frac{dy}{dx}$$

$$\therefore \frac{dx}{dy} = \frac{1}{2y}$$
M1

$$\therefore x = \frac{1}{2}\ln|y| + c$$
when $x = 0, y = \frac{1}{e}$ $\therefore c = -\frac{1}{2}\ln|\frac{1}{e}| = -\frac{1}{2} \times -1 = \frac{1}{2}$

$$\therefore x = \frac{1}{2}\ln|y| + \frac{1}{2}$$

$$\therefore 2x - 1 = \ln|y|$$

$$\therefore y = e^{2x-1}$$
 hence equation of curve is $f(x) = e^{2x-1}$.

Total = 3 marks

(a) Sum of angles in $\triangle ABC = \alpha + \alpha + \alpha + 2\alpha = 5\alpha$

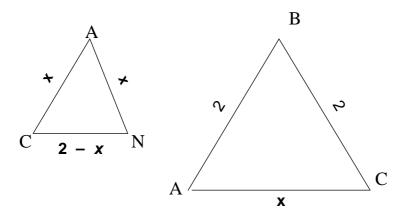
$$\therefore 5\alpha = 180^{\circ}$$

$$\therefore \alpha = 36^{\circ}$$
M1

(b) $\triangle ABC$ has two angles of 72° , therefore isosceles.

In
$$\triangle ANC$$
, $\angle ANC = 180^{\circ} - 3\alpha = 180^{\circ} - 108^{\circ} = 72^{\circ}$
Therefore $\triangle ANC$ also has two angles of 72° . M1

(c) $\triangle ABC$ is similar to $\triangle ANC$ because 3 pairs of equal corresponding angles.



Using ratios of corresponding sides:

$$\frac{x}{2-x} = \frac{2}{x} \quad \therefore x^2 = 4 - 2x \quad \therefore x^2 + 2x - 4 = 0$$
$$\therefore x = -1 \pm \sqrt{5}$$

But x > 0, therefore $x = -1 + \sqrt{5}$.

M is midpoint of AB, because ΔABN is isosceles. Therefore AM = 1

$$AN = AC = x = -1 + \sqrt{5}$$

and $\therefore \cos \alpha = \frac{1}{-1 + \sqrt{5}} = \frac{1}{-1 + \sqrt{5}} \times \frac{1 + \sqrt{5}}{1 + \sqrt{5}} = \frac{1 + \sqrt{5}}{4}$
 $\therefore \cos(\frac{\pi}{5}) = \frac{1 + \sqrt{5}}{4}$

Total = 4 marks

A1

END OF SOLUTIONS TO EXAMINATION 1