

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2011

Trial Examination 1

Instructions

Answer all questions. Do not use calculators.

A decimal approximation will not be accepted if an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working or explanation **must** be shown.

Unless otherwise indicated, the diagrams in this exam are not drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1

a. Sketch the graph of $y = \sqrt{3} \cos^{-1}\left(\frac{x}{2}\right)$. Clearly label the end-points and axis-intercepts with exact coordinates.

(Use $\pi \approx 3.14$ and $\sqrt{3} \approx 1.73$ to help you to sketch)

b. Find the exact value of $\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3} \cos^{-1}\left(\frac{x}{2}\right) dx$.

2 marks

Question 2 Let $A(-2,1,0)$, $B(-1,2,-2)$ and $C(0,-3,4)$ be three points in 3-dimensional space.			
a.	Determine whether A, B and C are <i>collinear</i> or not.	2 marks	
b.	Determine whether the position vectors of A, B and C are <i>coplanar</i> or not.	2 marks	

c. Find a vector that bisects the angle between the position vectors of *B* and *C*. 2 marks

Question 3

Shade clearly the region in the complex plane for $\{z : 1 \le z + \overline{z} \le 2\} \cap \{z : 1 \le |z - 1 + i| \le 2\}$.

Question 4 Let $z = \cos \theta + i \sin \theta$. **a.** Find |iz - z|.

b. Find
$$\arg(iz - z)$$
. 2 marks

c. Hence, or otherwise, show that $\cos \theta - \sin \theta = \sqrt{2} \sin \left(\frac{3\pi}{4} + \theta \right)$. 1 mark

Question 5

The position of a particle is given by $\tilde{r} = \frac{t}{2}\tilde{i} + (49t - 4.9t^2)\tilde{j}$, where time $t \ge 0$ is measured in seconds and distance is in metres. \tilde{i} is a horizontal unit vector to the right and \tilde{j} a vertical vector pointing upward. **a.** Find the initial speed (correct to the nearest whole number) of the particle.

- **b.** Show that the acceleration of the particle is constant. 1 mark
- c. Find the horizontal displacement when the particle returns to the same level as its initial position. 1 mark
- **d.** Find the cartesian equation of the path of the particle's motion. 1 mark

1 mark

Question 6

y is a differentiable function of x and satisfies $8x^3 - y^3 = 1 - 6xy^2 + 12x^2y$.

- **a.** Find $\frac{dy}{dx}$. 2 marks
- **b.** Sketch the graph of $8x^3 y^3 = 1 6xy^2 + 12x^2y$.

Let
$$f(x) = \frac{\log_e(x^2)}{|x|}$$
 where $x \in R \setminus \{0\}$.

a. Find the exact value of f'(-e).

2 marks

2 marks

b. Find the exact value of
$$\int_{-a}^{-1} f(x) dx$$
.

Question 8

The slope field for an unknown differential equation $\frac{dy}{dx} = f(x)$ is shown below, where x = 0 and $x = \pi$ are asymptotes.

a. Sketch a solution curve to the differential equation $\frac{dy}{dx} = f(x)$.

1 mark

b. Hence determine f(x) in simplest form.

Question 9

A strong rope connects a large crate to a fixed pole. The crate is about to move when a person pulls the rope with a force of 300 N. The following diagram shows the aerial view of the situation. Ignore the weight of the rope in your calculations.

a. Draw a clear triangle of forces to represent the pulling force and the tension forces T_1 and T_2 . Show the measure of each of the interior angles of the triangle of forces.

2 marks

2 marks

b. Use the triangle of forces to find tension T_1 to the nearest newton.	2 marks
---	---------

Question 10

A 0.2-kg particle is moving along the x-axis. Its velocity at position x is given by $v = \pm \sqrt{10 - 8x - 2x^2}$. Time is measured in seconds and distance in metres. **a.** Find the acceleration of the particle at the origin (x = 0). 1 mark

- **b.** Find the resultant force on the particle at the origin. 1 mark
- **c.** Find the maximum speed of the particle.