The Mathematical Association of Victoria Trial Exam 2011

SPECIALIST MATHEMATICS

Written Examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

NOTES

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.

• Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 13 pages with 3 detachable sheets of miscellaneous formulas at the back.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- Write your student name/number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g m/s², where g = 9.8

Question 1

An object of mass 4 kg is pushed along a rough horizontal surface by a force of size 20 Newton acting in the horizontal direction. The object moves to the right with an acceleration of 2 m/s^2 .

hori	zontal direction. The object moves to the right with an acceleration of 2 m/s ² .
a.	In the space below draw a diagram that shows all the forces acting on the object. You must clearly label these forces.
	1 mark
b.	Find in terms of g the coefficient of friction between the object and the surface.

2 marks

ector 3 i – 2 j – 6 k.	~		s velocity in the di	
~ ~ ~				

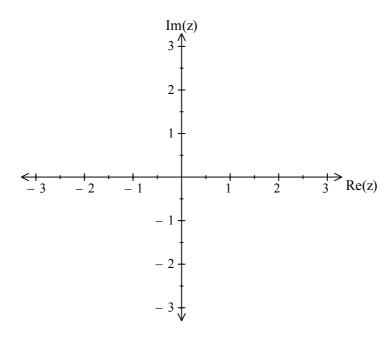
\sim	4 •	•
()	uestion	•
v	ucsuon	J

Consider the curve with equation $(x+1)^2 + \frac{(y+2)^2}{4} = 1$.					
Find the gradient of the normal to the curve at the point where $y = \sqrt{3} - 2$ and $x > -1$.					

\sim	4 •	4
()11	estion	4

that $f(-i) = 0$, find all roots o	f(z).		

a. On the Argand diagram below sketch the set of points $S = \{z : (z - \sqrt{2})(\overline{z} - \sqrt{2}) = 2, z \in C\}$.



2 marks

b.	The set S contains two points that satisfy $ z = z - 3\sqrt{2} $.	
	Find these two points in polar form.	

b.

A mass has velocity v m/s given by $v = \frac{1}{x} + \frac{1}{2}$ where x m is the displacement of the mass from the origin after t seconds.

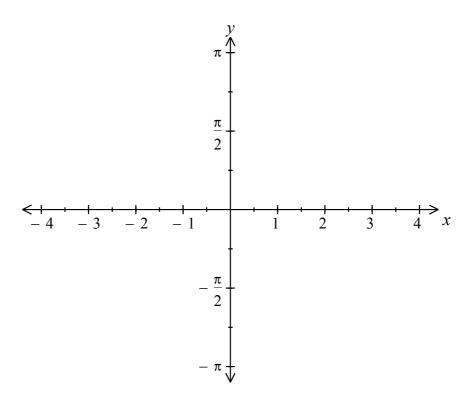
		 	 _
			 _

	1 1114
Given that $x = 2$ when $t = 0$, find t as a function of x.	

Question	7
----------	---

Consider the function $f: \left(0, \frac{1}{4}\right) \to R$, $f(x) = \arccos\left(\frac{1}{2\sqrt{x}}\right)$.				
Find $f'(x)$ in the form $\frac{a}{(bx+c)\sqrt{dx+e}}$ where a, b, c, d and e are integers.				

a. On the axes below sketch the graph of the curve $y = 2\arcsin\left(\frac{x}{3}\right)$. State the coordinates of the point of inflection and label the coordinates of all endpoints.



Find the volume of this s	solid. Give your answ	ver in the form $\frac{0}{2}$	$\frac{(a\sqrt{b} + c\pi)\pi}{d}$	where a, b, c and d are integer

റ	uestion	9

a.	Express $\frac{x^2}{(x+1)^2}$ in partial fraction form.	
	(x + 1)	
		2 marks
b.	Hence solve the differential equation $\frac{dx}{dt} = \left(1 + \frac{1}{x}\right)^2$ for t in terms of x given that $x = 0$ when $t = 0$.	

The path of a particle is given by $r = \sin(t) i - \cos(2t) j$, $0 \le t \le \frac{5\pi}{4}$.

Find the Cartesian equation of the path of the particle, stating the domain and range.	
	2
	3 m
Find a vector in the direction of motion of the particle at $t = \frac{\pi}{4}$.	
4	

2 marks

END OF QUESTION AND ANSWER BOOK

Specialist Mathematics Formulas

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$

curved surface area of a cylinder: $2\pi rh$

volume of a cylinder: $\pi r^2 h$

volume of a cone: $\frac{1}{3}\pi r^2 h$

volume of a pyramid: $\frac{1}{3}Ah$

volume of a sphere: $\frac{4}{3}\pi r^3$

area of a triangle: $\frac{1}{2}bc\sin A$

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^2(x) + \sin^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$
 $\cot^2(x) + 1 = \csc^2(x)$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
 $\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

function	\sin^{-1}	\cos^{-1}	tan ⁻¹
domain	[-1, 1]	[-1, 1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \text{Arg } z \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$
 $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$

 $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c\cos(ax)$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$$

$$\int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\int \frac{d}{dx} \left(\sin^{-1}(x) \right) = \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\int \frac{d}{dx} (\cos^{-1}(x)) = \frac{-1}{\sqrt{1 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\int \frac{d}{dx} \left(\tan^{-1}(x) \right) = \frac{1}{1+x^2} \qquad \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Euler's method: If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$

acceleration:
$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration:
$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

Vectors in two and three dimensions

$$\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}}$$

$$|\overset{\mathbf{r}}{_{\sim}}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt} \dot{\mathbf{i}} + \frac{dy}{dt} \dot{\mathbf{j}} + \frac{dz}{dt} \dot{\mathbf{k}}$$

Mechanics

momentum: p = mv

equation of motion: R = m a

friction: $F \le \mu N$