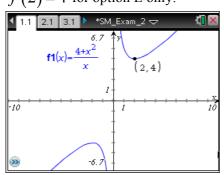
The Mathematical Association of Victoria Trial Examination 2011 Specialist Maths Examination 2 - SOLUTIONS

SECTION 1

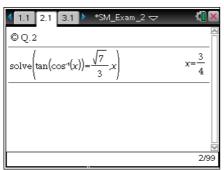
Answers							
1.	E	2. B	3. A	4. D	5. E	6. A	
7.	С	8. A	9. B	10. D	11. B	12. D	
13.	С	14. E	15. D	16. B	17. C	18. B	
19.	B	20. C	21. E	22. B			

Question 1Answer ESubstituting x = 2 for each option gives the resultf(2) = 4 for option E only.



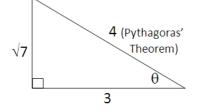
Question 2AnswerBUsing CAS, or knowledge of trigonometry,

 $\tan\left(\cos^{-1}\left(\frac{3}{4}\right)\right) = \frac{\sqrt{7}}{3}$



Alternatively,

The situation can be represented geometrically on a right angled triangle.



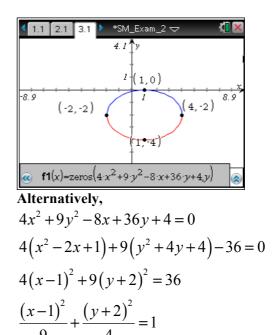
 $\frac{p}{q} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{3}{4}$

Question 3

Answer A

By graphing, using a conics application on CAS or by completing the square:

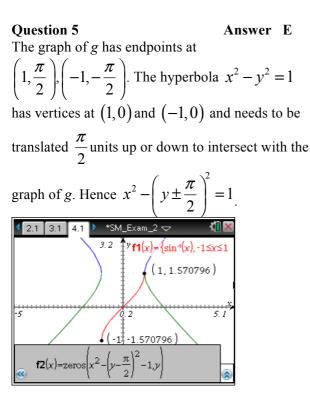
Centre is (1, -2), horizontal semi-axis is 3 and vertical semi-axis is 2.

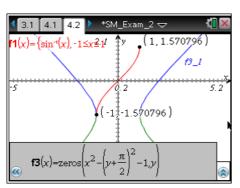


Question 4

$$x = t^2$$
 and $y = t(t^2 + 1), t \ge 0$
 $y = x^{\frac{1}{2}}(x+1)$
 $y = x^{\frac{3}{2}} + x^{\frac{1}{2}}$

Answer D





Question 6 Answer A The point of intersection of $\operatorname{Re}(z) = -2$ and $\operatorname{Im}(z) = i$ is z = -2 + i.

Question 7

Answer C

Using the conjugate root theorem, the roots

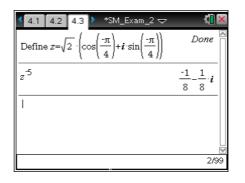
include z = 1, $z = 2\sqrt{2}$ and $z = 1 \pm i\sqrt{3}$. Therefore the degree of the polynomial must be at least 4.

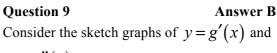
Question 8

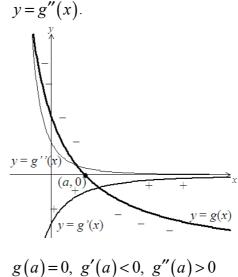
$$z = \sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$$

$$z^{-5} = \left(\sqrt{2}\right)^{-5} \operatorname{cis}\left(\frac{5\pi}{4}\right)$$

$$z^{-5} = -\frac{1}{8}(1+i)$$







g(a) = 0, g(a) < 0, g(a) > 0Therefore, g''(a) > g(a) > g'(a)

Ouestion 10

Answer D The solution to the differential equation is of the form $y = Ae^{-x} + Be^{2x}$. Therefore, a = 1, b = 2.

4.4 5.1 6.1 *SM_E	ixam_2 🤝 🛛 🗖 🔀
deSolve $(y''-y'=2\cdot y,x,y)$	y= c2 ·e ^{2·x} +c1·e ^{-x}
	1/99

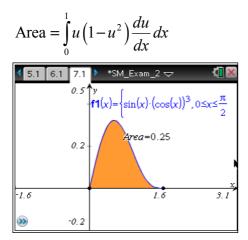
Question 11 Answer B Area = $\int_{0}^{\infty} (\sin(x)\cos^{3}(x)) dx$ $= \int_{0}^{2} \left(\sin(x) (1 - \sin^{2}(x)) \cos(x) \right) dx$ Let $u = \sin(x)$ therefore $\frac{du}{dx} = \cos(x)$

Terminals: x = 0, $u = \sin(0) = 0$ and

$$x = \frac{\pi}{2}, u = \sin\left(\frac{\pi}{2}\right) = 1$$

Substituting

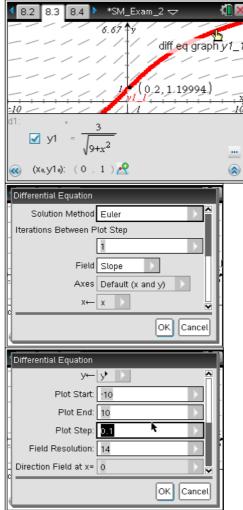
Substituting,



Ouestion 12 Answer D h = 0.1, therefore n = 2 for x = 0.2 $y_1 = 1 + 0.1 f(0)$ and $y_2 = (1+0.1f(0))+0.1f(0.1)$ $y_2 \approx 1.1999$ 4 8.2 8.3 8.4 *SM_Exam_2 🤜 Done Define f(x) $9+x^{2}$ y2=1+0.1;f(0)+0.1;f(0.1) y2=1.1999445

Alternatively, use the Differential Equation Graph functionality of your CAS, ensuring that the settings use Euler's method, with a step size of 0.1.

2/99



Question 13Answer CThe direction field could be a family of parabolasof the form $y = ax^2 + c$, where $a > 0, c \in R$.From the options available, the only differentialequation that could have a solution of this form isdy = x

$$dx = x$$
$$y = \int x \, dx = \frac{1}{2}x^2 + c$$

Ouestion 14 Answer E $p \cdot q = |p| \times |q| \cos(\theta)$... equation (1) Using the cosine rule $|z|^{2} = |p|^{2} + |q|^{2} - 2|p| \times |q| \cos(\pi - \theta)$ $\cos\left(\pi-\theta\right) = \frac{\left|\underbrace{p}\right|^{2} + \left|\underbrace{q}\right|^{2} - \left|\underbrace{r}\right|^{2}}{2\left|\underbrace{p}\right| \times \left|\underbrace{q}\right|}$ However, $\cos(\pi - \theta) = -\cos(\theta)$ $\cos\left(\theta\right) = -\left(\frac{\left|\underbrace{p}\right|^{2} + \left|\underbrace{q}\right|^{2} - \left|\underbrace{r}\right|^{2}}{2\left|\underbrace{p}\right| \times \left|\underbrace{q}\right|}\right) \quad \dots \text{ equation (2)}$ Substituting equation (2) in equation (1) $\underbrace{p \cdot q}_{\sim} = |\underbrace{p}_{\sim}| \times |\underbrace{q}_{\sim}| \times - \left(\frac{|\underbrace{p}_{\sim}|^2 + |\underbrace{q}_{\sim}|^2 - |\underbrace{r}_{\sim}|^2}{2|\underbrace{p}_{\sim}| \times |\underbrace{q}_{\sim}|}\right)$ $p \cdot q = -\frac{1}{2} \left(|p|^2 + |q|^2 - |r|^2 \right)$

Question 15 Since the vectors are perpendicular, $(a \ \underline{i} + 6 \ \underline{j} + 2 \ \underline{k}) \cdot (2 \ \underline{i} - 3 \ \underline{j} + 6 \ \underline{k}) = 0$ 2a - 18 + 12 = 0 a = 3For the unit vector to $3 \ \underline{i} + 6 \ \underline{j} + 2 \ \underline{k}$, $m = \frac{1}{\sqrt{3^2 + 6^2 + 2^2}} = \pm \frac{1}{7}$

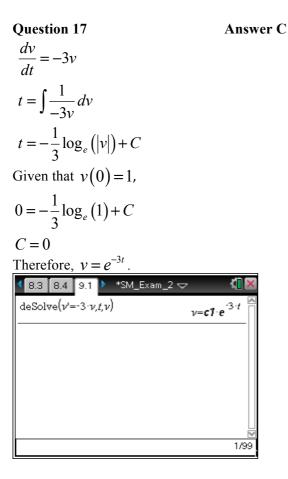
Question 16

Answer **B**

a = 2i + 4k and b = 3j - 5k. Consider option **A**. If c = 2i - 3j - k is linearly dependent with a and b, then c = a - b. But c = a - b = 2i - 3j + 9k. Hence, not **A**. Consider option **B**. If c = -4i - 9j + 7k is linearly dependent with a and b, then c = -2a - 3b. c = -4i - 9j + (-8 + 15)k. c = -4i - 9j + 7k, as required. Hence **B**.

Alternatively, c can be expressed as: $c = \alpha a + \beta b (1)$ $\therefore c = 2\alpha i + 3\beta j + (4\alpha - 5\beta) k$ For option A, using the above equation (1) $2\alpha = 2 \rightarrow \alpha = 1; 3\beta = -3 \rightarrow \beta = -1$ However, substituting theses values into the k term above gives the wrong answer because $4\alpha - 5\beta = 4 + 5 = 9$. For option B, using the above equation (1) $2\alpha = -4 \rightarrow \alpha = -2; 3\beta = -9 \rightarrow \beta = -3$ For the k term, $4\alpha - 5\beta = -8 + 15 = 7$. This is consistent with the k term given in option B.

Therefore option B is correct.



Question 18

Answer B

Let *m* be the mass of the body and *g* be acceleration due to gravity.

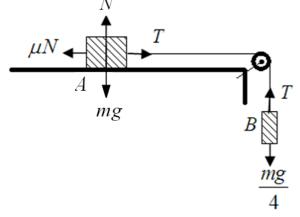
 $N = mg\cos(60^\circ)$

When the body is on the point of sliding,

$$\mu N = mg\sin(60^{\circ})$$
$$\mu (mg\cos(60^{\circ})) = mg\sin(60^{\circ})$$
$$\mu = \tan(60^{\circ}) = \sqrt{3}$$

Question 19

Answer B



Consider the resultant force at B.

$$R = ma$$

$$\frac{mg}{4} - T = \frac{m}{4} \times \frac{g}{5}$$

$$T = \frac{mg}{4} - \frac{mg}{20}$$

$$T = \frac{mg}{5}$$

Question 20

Answer C

Answer E

Using calculus or kinematics formulas, $v = \sqrt{492}$.

$$p = \frac{\sqrt{492}}{5} = 4.44 \text{ ms}^{-1}$$
Using kinematics formula

$$v^{2} = u^{2} + 2as$$

$$v^{2} = 10^{2} + 2 \times -9.8 \times -20$$

$$v = \sqrt{492}$$

$$p = mv$$

$$p = \frac{\sqrt{492}}{5}$$

$$n = 4.44 \text{ kgms}^{-1}$$
 (correct to 2 decimal place)

 $p = 4.44 \text{ kgms}^{-1}$ (correct to 2 decimal places).

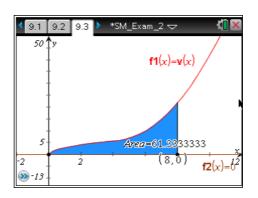
Question 21

$$v(t) = \begin{cases} 3\sqrt{t} & 0 \le t \le 4 \\ (t-4)^2 + 6 & 4 < t \le 20 \end{cases}$$

$$x = \int_{0}^{8} v(t) dt = \int_{0}^{184} m$$

3

0 8.4 9.1 9.2 *SM_Exam_2 Define $v(t) = \begin{cases} 3 \cdot \sqrt{t}, & 0 \le t \le 4 & Done \\ (t-4)^2 + 6, 4 \le t \le 20 \end{cases}$ $\int_{0}^{8} v(t) dt$ 61.33333333333 approx Fraction (5.E-14) $\frac{184}{3}$ 2/3



Question 22

Answer B Consider the resultant force on the vehicle: R = ma

-4800 = 1200a

 $a = -4 \text{ ms}^{-2}$

To find the braking time, use calculus or kinematics formulas. v = u + at

0 = 25 - 4t $t = \frac{25}{4} = 6.25 \text{ s}$

To find the braking distance, use calculus or kinematics formulas.

$$x = ut + \frac{1}{2}at^{2}$$

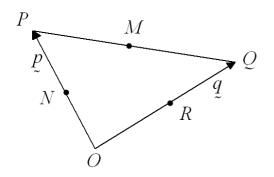
$$x = 25 \times 6.25 - \frac{1}{2} \times 4 \times (6.25)^{2}$$

$$x = \frac{625}{8} = 78.125 \text{ m}$$

END OF SECTION 1 SOLUTIONS

SECTION 2 SOLUTIONS

Question 1



a.

$$\begin{vmatrix} p \\ p \end{vmatrix} = \begin{vmatrix} q \\ p \end{vmatrix} = \sqrt{9 + 4 + 36}$$

$$\begin{vmatrix} p \\ p \end{vmatrix} = \begin{vmatrix} q \\ p \end{vmatrix} = 7, \text{ therefore } VOPQ \text{ is isosceles.}$$

$$p \cdot q = (-3 \times 2) + (2 \times -6) + (6 \times 3) = 0, \text{ therefore } \angle POQ = 90^{\circ}$$

$$1A$$

VOPQ is an isosceles right-angles triangle.

13.1 13.2 14.1 ► *SM_Exam_2 マ	<[] ×
Define <i>p</i> =[-3 2 6]	Done 🛛
Define $q = \begin{bmatrix} 2 & -6 & 3 \end{bmatrix}$	Done
dotP(p,q)	0
1	
	3/99

b. i.

$$\vec{OM} = \vec{OP} + \frac{1}{2}\vec{PQ}$$

$$\vec{OM} = \vec{p} + \frac{1}{2}(\vec{q} - \vec{p})$$

$$\vec{OM} = \frac{1}{2}(\vec{p} + \vec{q})$$
(This result effectively proves that $\vec{NM} = \vec{OR} = \vec{RQ}$)
$$\vec{OM} = -\frac{1}{2}\vec{i} - 2\vec{j} + \frac{9}{2}\vec{k}$$

b. ii. From the previous result,

 $\vec{NM} = \vec{OR} = \frac{1}{2}\vec{q}, \text{ therefore}$ $\vec{MN} = -\vec{OR} = -\frac{1}{2}\vec{q}$ $\vec{MN} = -\vec{i} + 3\vec{j} - \frac{3}{2}\vec{k}$

1A

Alternatively,

Anternatively,

$$\vec{MN} = -\vec{OM} + \vec{ON}$$
From part **b.i**.

$$\vec{MN} = -\frac{1}{2} \left(p + q \right) + \frac{1}{2} p$$

$$\vec{MN} = -\frac{1}{2} q$$

$$\vec{NN} = -\frac{1}{2} q$$

c.

Required to show that $\vec{OM} \perp \vec{PQ}$

$$\vec{OM} = \vec{OP} + \frac{1}{2}\vec{PQ}$$
$$= \vec{p} + \frac{1}{2}(\vec{q} - \vec{p})$$
$$= \frac{1}{2}(\vec{q} + \vec{p})$$

Therefore,

$$\vec{OM} \cdot \vec{PQ} = \frac{1}{2} \left(\vec{q} + \vec{p} \right) \cdot \left(\vec{q} - \vec{p} \right)$$
$$= \frac{1}{2} \left(\vec{q} \cdot \vec{q} - \vec{p} \cdot \vec{p} \right)$$
$$= \frac{1}{2} \left(\left| \vec{q} \right|^2 - \left| \vec{p} \right|^2 \right)$$
$$= 0 \quad \text{(because } \left| \vec{q} \right| = \left| \vec{p} \right| \text{: isosceles triangle)}$$
$$1A$$

Therefore the line OM is perpendicular to the hypotenuse PQ, as required.

2/9

d. $\underline{s} \cdot \underline{p} = 0$ because \underline{s} is perpendicular to \underline{p} . Therefore-3a + 2b + 6c = 0... equation 1 $\underline{s} \cdot \underline{q} = 0$ because \underline{s} is perpendicular to \underline{p} . Therefore2a - 6b + 3c = 0... equation 2 \underline{s} is a unit vector, therefore $a^2 + b^2 + c^2 = 1$... equation 31A

© Mathematical Association of Victoria 2011

1M

2011 SPECIALIST MATHS EXAM 2 SOLUTIONS

Solve equations 1, 2 and 3 simultaneously

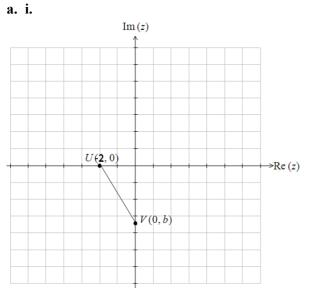
$$a = \frac{6}{7}, b = \frac{3}{7} \text{ and } c = \frac{2}{7} \text{ or } a = -\frac{6}{7}, b = -\frac{3}{7} \text{ and } c = -\frac{2}{7}$$

$$1A$$

$$a = \frac{6}{7}, b = \frac{3}{7} \text{ and } c = \frac{2}{7} \text{ or } a = -\frac{6}{7}, b = -\frac{3}{7} \text{ and } c = -\frac{2}{7}$$

$$a = \frac{6}{7} \text{ and } b = \frac{-3}{7} \text{ and } c = \frac{-2}{7} \text{ or } a = \frac{6}{7} \text{ and } b = \frac{3}{7}, b = -\frac{3}{7} \text{ and } c = -\frac{2}{7}$$

$$a = \frac{-6}{7} \text{ and } b = \frac{-3}{7} \text{ and } c = \frac{-2}{7} \text{ or } a = \frac{6}{7} \text{ and } b = \frac{3}{7}, b = -\frac{3}{7} \text{ or } a = \frac{6}{7} \text{ and } b = \frac{3}{7}, b = -\frac{3}{7}$$



1A

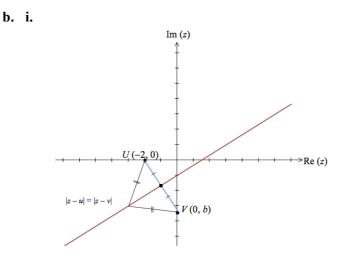
a. ii.

Let the equation of the line segment be of the form y = mx + c

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{b}{2}$$

$$c = b$$

Equation is $y = \frac{b}{2}x + b$, Domain is $[-2, 0]$
1A



1A

b. ii.

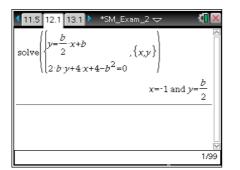
By definition, P is equidistant from U and V. Every point in P will therefore be perpendicular to UV, as illustrated in the diagram below.

Alternatively, from part **a.ii.** above, $m_{uv} = \frac{b}{2}$ and from part **b.iii.** below, $m_p = -\frac{2}{b}$. $m_P \times m_{uv} = -1$, therefore *P* is perpendicular to *UV*. **1**A Im (z) U(-2, 0)Re (z) $M_{(1, b/2)}$ V(0, b)b. iii. |z-u| = |z-v| $\left|x+iy+2\right| = \left|x+i\left(y-b\right)\right|$ $\sqrt{(x+2)^2 + y^2} = \sqrt{x^2 + i(y-b)^2}$ 1M $x^{2} + 4x + 4 + y^{2} = x^{2} + y^{2} - 2by + b^{2}$ $2by+4x+4-b^2=0$, as required **1A c.** Solve simultaneously for *x* and *y*,

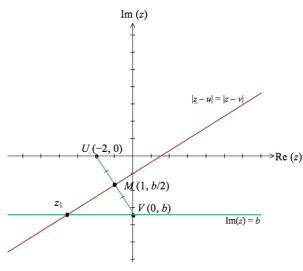
 $y = \frac{b}{2}x + b$ and $2by + 4x + 4 - b^2 = 0$

$$M\left(-1,\frac{b}{2}\right)$$
 1A

1M



d. i.

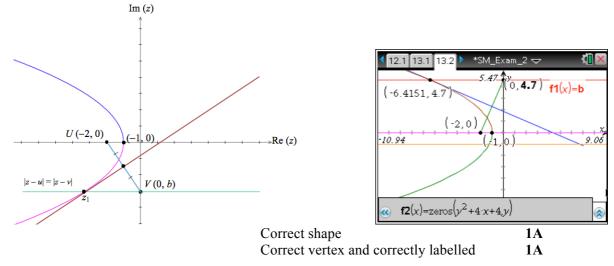


d. ii.

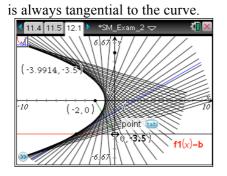
The cartesian equation of *P* is $2by + 4x + 4 - b^2 = 0$ (equation 1) At the point of intersection with y = b (equation 2), substitute equation 2 in equation 1 **1M** $2y^2 + 4x + 4 - y^2 = 0$ **1A** $y^2 + 4x + 4 = 0$, as required.

d. iii.

The equation of the curve can be graphed on a CAS, as shown below.



Alternatively, the path of can be explored using a dynamic geometry application on a CAS device, as illustrated in the screen dump below. This clearly shows that the vertex of the curve is at (-1,0), and that *P*



Question 3

a. i. Consider the velocity of the particle as a function of its displacement.

$$v(x) = \frac{dx}{dt}$$

$$0 = 6\sqrt{1 - x^2}$$

$$1 - x^2 = 0$$

$$x = 1 \text{ or } x = -1$$

10.1 11.1 11.2 *SM_Exam_2	√ ∛ I×
Define $v(x)=6 \cdot \sqrt{1-x^2}$	Done
© (a)(i)	
solve(v(x)=0,x)	x=-1 or x=1
1	
	3/99

a. ii.

 $1 - x^2 \ge 0$

 $-1 \le x \le 1$

Domain is $\{x : x \in [-1, 1]\}$

10.1 11.1 11.2 *SM_Exam_2	∽ ∛ IX
Define $v(x) = 6 \sqrt{1 - x^2}$	Done 🔨
© (a)(i)	
solve(v(x)=0,x)	x=-1 or x=1
© (a)(ii)	
$solve(v(x) \ge 0, x)$	-1≤x≤1
	>
	5/99

b.i.

$$a = \frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt} = v\frac{dv}{dx}$$
, as required

b.ii.

$$v = \frac{dx}{dt} = 6\sqrt{1 - x^2}$$

© Mathematical Association of Victoria 2011

1A

1A

$$a = v \frac{dv}{dx} = 6\sqrt{1 - x^2} \times \frac{-6x}{\sqrt{1 - x^2}} = -36x$$

Therefore, $a = \frac{d^2x}{dt^2} + 36x = 0$, as required.

10.1 11.1 11.2 ▶ *SM_Exam_2	K 🛛 🗙
Define $v(x) = 6 \cdot \sqrt{1 - x^2}$	Done 🦷
$\frac{d}{dx}(\nu(x))\cdot\nu(x)$	-36·x
$\frac{d}{dx}(v(x))$	$\frac{-6 \cdot x}{\sqrt{1-x^2}}$
	3/99

c. i.

$$\frac{dx}{dt} = 6\sqrt{1-x^2}$$

$$t = \frac{1}{6}\int \frac{dx}{\sqrt{1-x^2}}$$

$$t = \frac{1}{6}\sin^{-1}(x) + c$$
When $t = 0, x = 0$, therefore $c = 0$.

$$t = \frac{1}{6}\sin^{-1}(x), \text{ as required.}$$

$$\frac{11.11121.3 \times MExam 2 \times MExam 2 \times MExam 2}{2} \times MExam 2 \times MExam 2 \times MExam 2}$$

$$\frac{11.11121.3 \times MExam 2 \times MExam 2}{2} \times MExam 2 \times MExam 2}{2} \times MExam 2 \times MExam 2}$$

c. ii.

$$t = \frac{1}{6} \sin^{-1} (x)$$

$$x = \sin (6t)$$

$$v(t) = \frac{dx}{dt} = 6 \cos (6t)$$

$$\underbrace{(112(113)(114) + SM_{Exam_{2}} \otimes 10^{-1})}_{\text{solve}(\sin^{-1}(x) = 6 \cdot t, x)}$$

$$\underbrace{\frac{d}{dt}(\sin(6 \cdot t))}_{(1)} = \underbrace{(112(113)(14) + SM_{2} \otimes 10^{-1})}_{(1)} \otimes 10^{-1} \otimes 10^{-1} \otimes 10^{-1}}_{(2/3)}$$

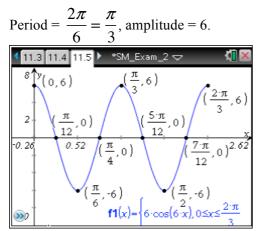
c. iii.

1M

1A

1A

1M



Correct shape, amplitude and period Correct *x*-intercepts and coordinates of turning points

d. The acceleration is a maximum where $\frac{dv}{dt}$ is greatest, that is, where the gradient of the velocity-time

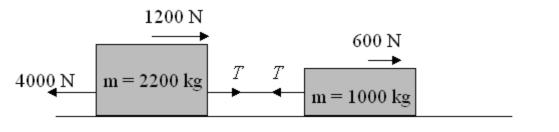
graph is steepest. By inspection, this occurs when
$$t = \frac{\pi}{4}$$
.
Maximum acceleration is given by $\frac{d(6\cos(6t))}{dt}$ at $t = \frac{\pi}{4}$.

$$a_{\text{max}} = 36$$

max		
< 11.3 11.4 11.5 <	*SM_Exam_2 マ	K 🛛 🗙
	$x = \sin(6 \cdot t)$ and $\frac{1}{2}$	$\frac{\pi}{12} \leq t \leq \frac{\pi}{12}$
$\frac{d}{dt}(\sin(6\cdot t))$		6·cos(6· <i>t</i>)
© Maximum accele	ration	
$\frac{d}{dt} (6 \cdot \cos(6 \cdot t)) t = \frac{\pi}{4}$		36
		4/99

Question 4

a.



b. Consider the resultant force on the vehicles

$$\begin{split} \tilde{R} &= m\tilde{q} \\ (4000 - 600 - 1200) &= (2200 + 1000)a \end{split}$$
 $a &= \frac{2200}{3200} \\ a &= \frac{11}{16} \text{ms}^{-2} = 0.6875 \text{ms}^{-2} \end{aligned}$ 1A

1A 1A

1A

c. For the car,

$$T - 600 = 1000a$$
, with $a = \frac{11}{16} \text{ms}^{-2}$
 $T = 1000 \times \frac{11}{16} + 600$
 $T = 1287.5 \text{ N}$
1M

Alternatively, for the truck,

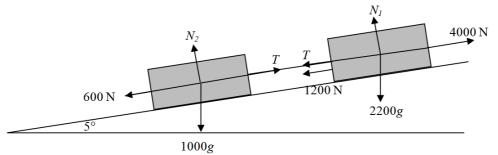
4000 - 1200 - T = 2200a, with $a = \frac{11}{16} \text{ ms}^{-2}$ $T = 4000 - 1200 - 2200 \times \frac{11}{16}$ T = 1287.5 N

d.

The acceleration of the car and truck is constant, therefore v = u + at

$$22 = 0 + \frac{11}{16}t$$
$$t = \frac{22 \times 16}{11} = 32s$$

e.



The component of the weight of the vehicles parallel to the inclined road is $(2200+1000)g\sin(5^\circ)$ Resolving forces parallel to the plane, R = ma

$$a = \frac{4000 - 1200 - 600 - (2200 + 1000)g\sin(5^{\circ}) = (2200 + 1000)a}{(2200 + 1000)g\sin(5^{\circ})}$$
IM

 $a \approx -0.167 \text{ ms}^{-2}$ (i.e. the speed of the vehicles is decreasing by 0.17 ms⁻¹ every second) 1A

$$a = \frac{F_T - kv}{m}, \text{ where } F_T = 4000 \text{ N}, m = 3200 \text{ kg and } k = 250.$$

$$\frac{dv}{dt} = \frac{4000 - 250v}{3200}$$
Solving the differential equation,
$$v = Ae^{-\frac{5}{64}t} + 16$$
Starting from rest, $v = 0$ at $t = 0$

$$0 = Ae^{-\frac{5}{64} \times 0} + 16$$

$$A = -16$$
Therefore,
$$v = 16\left(1 - e^{-\frac{5}{64}t}\right)$$

As $t \to \infty$, $e^{-\frac{3}{64}t} \to 0$ and $v \to 16$ The limiting (terminal) velocity is 16 ms⁻¹

17.1 17.2 18.1 ► *SM_Exam_2	(<mark>)</mark> 🗙
$deSolve\left(\nu' = \frac{4000 - 250 \cdot \nu}{3200}, t, \nu\right)$	~
$\nu = c \mathbf{i} \cdot e^{\frac{-5 \cdot i}{64}} +$	16
solve $\left(v = \mathbf{c}\mathbf{i} \cdot \mathbf{e}^{-5 \cdot t} + 16, \mathbf{c}\mathbf{i} \right) v = 0 \text{ and } t = 0$	
c1=-	16
	2/3

Question 5

a.

1

f

To find the maximal domain, $x^6 - 64 \ge 0$, but the range $0 \le y < 6$.

 $(x^4 \neq 0)$, but this condition is made irrelevant by the maximal domain excluding the possibility of x = 0.) Solving the inequation $x^6 - 64 \ge 0$ for *x*, and

(-2,0)/

-3.77

(2,0)

 $f1(x) = \{f(x), -6, <x < 6\}$

solving the equation f(x) = 6 for x, gives the results

 $x \le -2$ or $x \ge -2$ and $x \approx -6.004$ or $x \approx 6.004$ $D = \{x: -6.004 < x \le -2\} \cup \{x: 2 \le x < 6.004\}, \text{ as shown on the graph}$ 14.2 15.1 15.2 ▶ *SM_Exam_2 マ 14.2 15.1 15.2 ▶ *SM_Exam_2 マ 9.56 **†**y Define f(x)(-6.004103, 6)(6.004103,6) f2(x)=6solve(f(x)=6,x)x=-6.0041026 or x=6.0041026 x≤-2 or x≥2 solve

3/99

-10

>>

1A

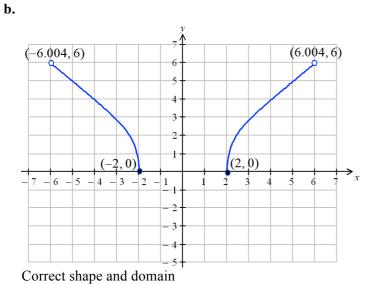
1A

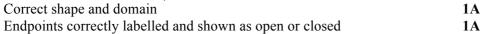
1M

1A

÷

11





$$\delta V \approx \pi y^2 \delta x$$

$$V = \pi \int_2^5 \left(f(x)^2 \right) dx$$

$$V = \pi \int_2^6 \left(\frac{x^6 - 64}{x^4} \right) dx$$
14

c.ii.

$$V = \pi \int_{2}^{6} \left(\frac{x^{6} - 64}{x^{4}} \right) dx$$

$$V = \frac{5408\pi}{81} L$$

$$\boxed{15.1 \times 15.2 \times 15.3 \times 15.4 \times 10^{-2}}$$

$$\boxed{15.1 \times 15.2 \times 15.3 \times 10^{-2}}$$

$$\boxed{10000}$$

$$\boxed{100000}$$

$$\boxed{100000}$$

$$\boxed{100000}$$

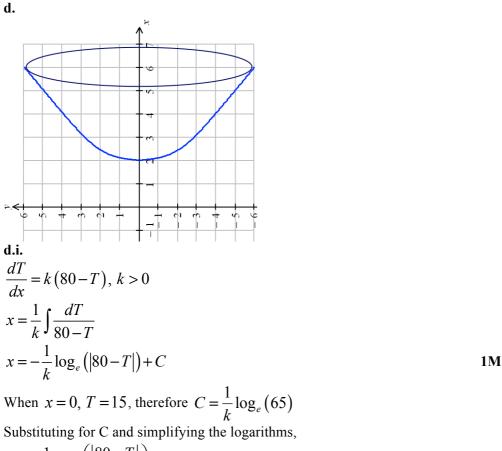
$$\boxed{1000000}$$

$$\boxed{100000}$$

$$\boxed{10000000000$$

$$\boxed{1000$$

A



$$x = -\frac{1}{k} \log_e \left(\left| \frac{80 - T}{65} \right| \right)$$

$$\frac{80 - T}{65} = e^{-kx}$$
1A

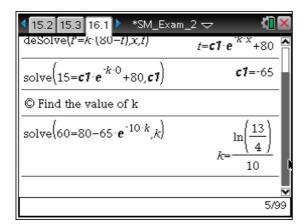
 $T = 80 - 65e^{-kx}$, as required

(This meets the initial condition that $T(0) = 80 - 65e^{-k \times 0} = 15$)

15.2	15.3	16.1 🕨	*SM_Exan	m_2 ▽	🚺 🔀
© Vei	rify us	sing DE	solve		
deSol	ve(t) =	k•(80−t	$)_{,x,t}$	$t = c 1 \cdot e^{-k}$	^{r·x} +80
solve	(15= c	$1 \cdot \mathbf{e}^{\mathbf{k} \cdot 0}$	+80, c1)	c	1 =-65
Ι					
					3/99

d.ii. $T = 80 - 65e^{-kx}$ When T = 60, x = 10Solve for k, $60 = 80 - 65e^{-10k}$ $k = \frac{1}{10}\log_e\left(\frac{13}{4}\right)$

2011 SPECIALIST MATHS EXAM 2 SOLUTIONS



e.i.

$$T = 55e^{-m(x-10)} + 5$$

When $T = 30$, $x = 10 + 15 = 25$
Solve for m , $30 = 55e^{-m(25-10)} + 5$
 $m = \frac{1}{15} \log_e \left(\frac{11}{5}\right) = \frac{\log_e (2.2)}{15}$, as required
$$\frac{15.3 \ 16.1 \ 16.2 \ *SM_Exam_2 \ t = 55 \cdot e^{m \cdot x} + 5|c2 = 55 \cdot e^{-10 \cdot m} + 5|c2 = 55 \cdot e^{m \cdot x} + 5|c2 = 5$$

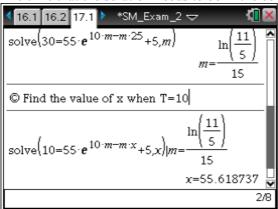
e.ii.

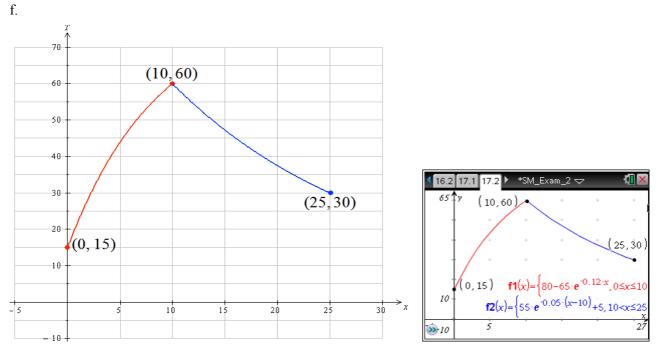
Solve for x,
$$10 = 55e^{-\frac{\log_e(2.2)}{15}(x-10)} + 5$$

 $x \approx 56$

The time that the solution needs to be in the cooling room is (56 - 10) = 46 minutes

1A





Correct shape (growth followed by decay)1ACorrect domains, with endpoints correctly labelled1A

END OF SOLUTIONS