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Question 1 – continued 
Copyright © Insight Publications 2012 

Question 1 

a. Show that for ( )( )
2

112arcsin ,10
xx

x
dx
dx

−
=−<< . 

 
Worked solution 

 
 
 
 
 
 
 
 
 
 
 
 
 

2 marks 
 
Mark allocation  

• 1 mark for correctly using the chain rule to differentiate ( )( )arcsin 2 1 .x −  

• 1 mark for simplifying. 
 
 
 

Tip 

The derivative of arcsin(u) is 
21 u

u
−

′
 

 
  

( )( )

2

2

2

2

2

 arcsin 2 1

12
1 (2 1)

12
1 (4 4 1)

12
4 4

2

2
1

d x
dx

x

x x

x x

x x

x x

−

= ×
− −

= ×
− − +

= ×
−

=
−

=
−



3 

END OF QUESTION 1 
TURN OVER 
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b. Hence, find the exact value of  dx
xx∫ −

4
3

2
1

2

6 . 

 
 
Worked solution 
 
3
4

2
1
2

6 dx
x x−

∫  

 
     

=

3
4

2
1
2

16 dx
x x−

∫  

      

[ ]
3
4
1
2

6 arcsin(2 1)x= −
  

( )16 arcsin arcsin 0
2

  = −    
        

6
6
π

= ×  

= π  
2 marks 

 
Mark allocation  

• 1 mark for the correct antiderivative. 
• 1 mark for the correct answer. 
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Question 2 – continued 
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Question 2 
a. Solve the following equation over C. 

2 2 5 0z iz− + =  
 
Worked solution   
 

2 2 5 0z iz− + =  

           

22 (2 ) 4 1 5
2 1

i iz ± − × ×
⇒ =

×
 

                   
2 22 4 20

2
i i i± +

=  

                   

22 24
2

i i±
=  

                   

( )2 2 6

2

i i±
=  

                   ( )1 6 i= ±  
2 marks 

 
Mark allocation  

• 1 mark for the correct use of the quadratic formula. 
• 1 mark for the correct answer. 
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Question 2 – continued 
TURN OVER 
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b. Let 1 3 .z i= −  
Express 

  

z1  in polar form, θrcis  where )( 1zArg=θ . 
 
Worked solution 
 

       1 3z i= −  

      ( ) ( )
2 2

1 3 1z = + −  

1 4 2z⇒ = =  

( ) 1
1

1tan
3

Arg z − − =  
 

 

             1 1tan
3

−  = −  
 

 

     = 
6
π

−  

     
1 2

6
z cis π− ⇒ =  

 
  

1 mark 
Mark allocation   

• 1 mark for the correct answer. 
 

 

Tip 

1z  is in the fourth quadrant, so  0)(
2 1 <<

− zArgπ
. 
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Question 2 – continued 
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END OF QUESTION 2 
TURN OVER 
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c. On the argand diagram below, plot and clearly label 

i. 1z  

ii. 2 1z z i=  

 
Worked solution 

 
 

2 1 1z z i z i= =
 

2 2z i=  

 
2 marks 

 
Mark allocation  

• 1 mark for the correct position of 1z . 

• 1 mark for the correct position of 2z . 
 
 
 
  

1 3z i= −
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Question 3 – continued 
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Question 3 

A particle moves in a straight line with an acceleration of a m/s 2, as given by 
2

, 0
1 log ( 1)e

v va v
v

+
= >

+ +
. 

At time t seconds, its displacement is x metres from a fixed point and its velocity is v m/s. 
What is the displacement of the particle as it moves from its position where v = (e – 1) m/s  to 
its position where v = (e2 – 1) m/s? 
 
Worked solution  

   

2

.
1 log ( 1)e

dv v va v
dx v

+
= =

+ +  
1

1 log ( 1)e

dv v
dx v

+
=

+ +  
1 log ( 1)

1
e vdx

dv v
+ +

=
+  

 

  
2 1

1

1 log ( 1)
.

1

e
e

e

v
x dv

v

−

−

+ +
=

+∫  

 
 

Let 1 log ( 1)eu v= + +  

1
1

du
dv v

=
+  

3

2

. .dux u dv
dv

= ∫  

 
     

 =
3

2

.u du∫  

       = 
32

22
u 

 
    

 

      
2 21 3 2

2
 = −   

       

5
2

=
 

 
∴ The displacement is  metres.  

 
3 marks 

  

5  or 2.5
2
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END OF QUESTION 3 
TURN OVER 
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Mark allocation  

• 1 mark for the correct differential equation for dx
dv .

 

• 1 mark for antidifferentiating correctly.  
• 1 mark for the correct answer. 

 

Tip 
Since x is required as a function of v, and the acceleration is given as a function 

of v, then a is replaced by . .dvv
dx
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Question 4 – continued 
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Question 4 
A container of mass 400 kg rests on the rough surface of an inclined tray truck. The tray is 
inclined at an angle of θ ° to the horizontal.  
 
a. On the diagram below, clearly label the three forces, including the normal force, N, 

and the friction force, F, acting on the container. 
 
Worked solution 
 
  N          F  
 
 
 
 
 
        θ  
        400g 
 

1 mark 
 
Mark allocation  

• 1 mark for correctly labelling the three forces. 
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END OF QUESTION 4 
TURN OVER 
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When the tray is raised to an angle of 45° to the horizontal, the container accelerates down the 

tray at  
20

2g
 m/s2. 

 
b. What is the coefficient of friction between the container and the surface of the tray? 
 
Worked solution 

Label the forces acting on the container, parallel and perpendicular to the tray. 
 
  

 
 

      
j
%

 
             
   
 

i
%               45° 

        
 
 
 
 
 
 
 

~R (400 sin45 )g Nµ= °−
 

~i + ( 400 cos45 )N g− °
~
j 2400

20
g

= × ~i
 

 

~R (200 2 )g Nµ= − ~i ( 200 2)N g+ −
~
j 20 2g= ~i  

              200 2 0N g− =  

                               200 2N g=  

           200 2 20 2g N gµ− =  

200 2 200 2 20 2g g gµ− =  

               200 200 20µ− =  

                         200 180µ =  

                          

180 0.9
200

µ⇒ = =  

3 marks  
Mark allocation  

• 1 mark for the correct equation of motion. 
• 1 mark for correctly evaluating the normal, N. 
• 1 mark for the correct answer.  

400g 

N µ  

400 cos45g °  

400 sin45g °  

N 

45°
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Question 5 – continued 
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Question 5 

a. Use a compound angle formula to show that 6 2cos
12 4
π +  = 

 
. 

 
Worked solution 
 

cos cos
12 3 4
π π π   = −   

     

                
cos cos sin sin

3 4 3 4
π π π π       = +       

         

                

1 2 3 2
2 2 2 2

= × + ×
 

                

6 2
4
+

=
 

1 mark 
 
Mark allocation  

• 1 mark for correctly evaluating the appropriate compound angle formula. 
 

 

Tip 

cos cos
12 4 6
π π π   = −   

   
could also be used to obtain the correct answer. 
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END OF QUESTION 5 
TURN OVER 
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b. Hence, evaluate
2

3

12

4sin cos .x x dx

π

π
∫  

Express the answer in the form  
n








 +
4

26 , where n is an integer. 

 
Worked solution 
 

2
3

12

4sin cos .x x dx

π

π
∫  

Let u = cos x 

sin
du x
dx

⇒ = −  

2
3

12

4sin cos .x x dx

π

π
∫  = 

cos
2

3

cos
12

4 .
du u dx
dx

π

π

 
 
 

 
 
 

−∫
 

                                    

cos
2

3

cos
12

4 .u du

π

π

 
 
 

 
 
 

= −∫  

                                    
4 2

12

cos

cos
u

π

π = −    
 

                                    

4 4cos cos
2 12
π π   = − +   

   
 

                                    

4
6 2

0
4

 +
= +   

 
 

                                    

4
6 2

4
 +

=   
 

  

2 marks 
 
Mark allocation  

• 1 mark for the correct antiderivative. 
• 1 mark for the correct answer. 

 
 
 
  



14 
 

Question 6 – continued 
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Question 6 

a. Sketch the graph of the curve with equation 1cos ( ) .
2

y x π−= −  on the set of axes 

below. 
 
Worked solution  
 

11, cos ( 1)
2 2 2

x y π π ππ−= − = − − = − =
 

10, cos (0) 0
2 2 2

x y π π π−= = − = − =
 

11, cos (1) 0
2 2 2

x y π π π−= = − = − = −
 

 

 
1 mark 

 
Mark allocation  

• 1 mark for the correct graph. 
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END OF QUESTION 6 
TURN OVER 
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b. Find the volume generated when the region enclosed by the curve with equation 

2
)(cos 1 π
−= − xy , the y-axis and the lines 

2
 and 0 π

== yy  is rotated about the y-axis 

to form a solid of revolution. 
 
Worked solution 
 

           
1cos ( )

2
y x π−= −

 
1cos ( )

2
x y π− = +

 

      
cos

2
x y π ⇒ = + 

   

         

2 2cos
2

x y π = + 
    

Volume  = 
2

2

0

cos .
2

y dy

π

ππ  + 
 ∫

 
 

 

2

0

1 cos(2 ).
2

y dy

π

ππ + +
= ∫

 
 

 

2

0

(1 cos(2 )).
2

y dy

π

π π= + +∫  

 

2

0

1 sin(2 )
2 2

y y
π

π π = + +  
 

 

1 1sin(2 ) 0 sin( )
2 2 2 2
π π π π    = + × − +          

 2 2
π π

= ×
 

 

2

4
π

=
 
 

4 marks 
Mark allocation  

• 1 mark for correctly expressing x as a function of y. 
• 1 mark for the correct definite integral representing the volume. 
• 1 mark for correctly using the double angle formula in the integrand. 
• 1 mark for the correct answer. 
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END OF QUESTION 7 
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Question 7 

For the relation 2 2log ( )e xy x y= , show that 
–dy y

dx x
= . 

 
Worked solution 
 

                      
2 2log ( )e xy x y=  

        
2 2log ( ) log ( )e ex y x y+ =   

( ) ( )2 2log ( ) log ( )e e
d dx y x y
dx dx

+ =  

  
( ) ( )2 2 21 log ( ) . 2 . . .e

d dy d dyy x y x y
x dy dx dy dx

+ = +  

                    
2 21 1 . 2 2 .dy dyxy yx

x y dx dx
+ = +  

                     

2 21 1
2 2

dyxy yx
x dx y

 
− = − 

 
 

                    

2 2 2 21 2 2 1x y dy x y
x dx y

 − −
=  

   

                                

2 2

2 2

1 2
2 1

dy x y y
dx x x y

−
= ×

−
 

 
 
 
 

 
 

3 marks 
 
Mark allocation  

• 1 mark for correctly differentiating the relation using implicit differentiation. 

• 1 mark for correctly expressing the relation as a function of  
dy
dx

. 

• 1 mark for simplifying correctly. 
 
 

Tip 
The relation cannot be expressed explicitly as a function of x, so implicit 

differentiation is required to obtain  
dx
dy

. 

 

  

–dy y
dx x

⇒ =

( )2 2

2 2

2 1

2 1

x ydy y
dx x x y

− −
= ×

−
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Question 8 – continued 
TURN OVER 
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Question 8 

The position vector of a moving particle, ~r( )t  metres, at any time, t seconds, is given by 

~r( )t 2
~ ~

2 tan( ) i sec ( ) j,    , .
2 2

t t t π π− = + ∈ 
   

 
a. Determine the Cartesian equation for the path of the particle. State the domain and 

range. 
 
Worked solution 
 

        ~r( )t 22tan( )i sec ( ) jt t= +
% %

 

            2tan( )x t=  

tan( )
2
xt⇒ =  

         
2sec ( )y t=  

              
21 tan ( )t= +  

    

2

1
4
xy⇒ = +   

Domain, 2tan( ), ,
2 2

x t t π π− = ∈ 
 

 

x R⇒ ∈    

Range, 
2

1
4
xy = +  

[1, ) sincey x R⇒ ∈ ∞ ∈   
3 marks 

 
Mark allocation  

• 1 mark for the correct Cartesian equation. 
• 1 mark for the correct domain. 
• 1 mark for the correct range. 

 
 

Tip 

Use the identity 2 2sec ( ) 1 tan ( ).t t= +  
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End of Question 8 
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b. Find the minimum speed of the particle. 
 
Worked solution 
 

v( )t
%

2[2tan( )i sec ( ) j]d t t
dt

= +
% %  

~v( )t ( ) 2[2tan( )i cos( ) j]d t t
dt

−= +
% %  

 

v( )t
%

2 32sec ( )i ( 2)( sin( ))(cos( )) jt t t −= + − −
% %

 

v( )t
%

2
3

2sin( )2sec ( )i j
cos ( )

tt
t

= +
% %

 

v( )t
%

2 22sec ( )i 2tan( )sec ( ) jt t t= +
% %

  

4 2 44sec ( ) 4tan ( )sec ( )v t t t⇒ = +  

       ( )4 24sec ( ) 1 tan ( )t t= +  

       ( )= 4 24sec ( ) sec ( )t t  

 
 

       
32 sec ( )t=  

Minimum value of sec( )t  is 1. 

⇒  The minimum value of 3sec ( )t  is 1. 

∴ The minimum speed is 2 m/s. 
3 marks 

Mark allocation  

• 1 mark for the correct velocity vector. 
• 1 mark for the correct equation of the speed as a function of t. 
• 1 mark for the correct answer. 

 
 

Tip 

Use the identity 2 2sec ( ) 1 tan ( ).t t= +  
 
 
 
 
  

= 64sec ( )t
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Question 9 – continued 
TURN OVER 
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Question 9 

Three points, A, B and O, are given by ( )2,1, 2 , (2,2,0) and (0,0,0)A B O . 

a. Find the vector AB
→

A B
→

 expressed in the form i j k.x y z+ +
% %%

 

 
Worked solution 
 

→
OA = + +~ ~~

2 i j 2k
 

→
OB = +

% %
2i 2 j  

→ → →
= −AB OB OA  

       = +
% %

2i 2j − + +
% %%

(2i j 2k)
 

       
= −

%%
j 2k  

1 mark 
 
Mark allocation  

• 1 mark for the correct answer. 
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Question 9 – continued 
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b. A point, C, on vector AB
→

 is closest to O. Find the coordinates of point C. 
 
 
Worked solution 
 
            O  
 
 
 
           A            B  
         C 
 

Let C be the point on 
→

AB  where 
→

OC  is perpendicular to
→

.AB  
→ → →

→
→ →= ×
.AO AB ABAC

AB AB
 

       =
→ → →

→
 
 
 2

1 .AO AB AB
AB

 

       
( )

= − − −
+ − % %%2

2 2

1 ( 2i j 2k) .
1 ( 2)

−
%%

( j 2k) −
%%

( j 2k)
 

       
=

1
(3)

5
( j 2k)−

%%  

       
3 6

j k
5 5

= −
%%  

OC OA AC
→ → →

= +
 

       
2i j 2k= + +
% %%

3 6
j k

5 5
+ −

%%  

       
8 4

2i j k
5 5

= + +
% %%  

 
8 4is 2, ,
5 5

C  ⇒  
    

3 marks 
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END OF QUESTION 9 
TURN OVER 
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Mark allocation  

• 1 mark for the correct vector .AC
→

 

• 1 mark for the correct vector .OC
→

 
• 1 mark for the correct answer. 

 

Tip 
  

The vector resolute of a
%

 onto b
%

 is 2(a.b) b b÷
% % %

 

The vector OC
→

 could also have been found by finding the vector resolute of BO
→

 

onto .BA
→
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Question 10 – continued 
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Question 10 

On the axes supplied, sketch the graph of  [ ]: 0, 2 , ( ) cot 1
2
xf R f xπ  → = − 

 
, clearly 

indicating the location of any asymptotes and intercepts with the axes. 
 
 
Worked solution 
 

[ ]: 0, 2 , ( ) cot 1
2
xf R f xπ  → = − 

   
 
Asymptotes: 
 

cos
2cot

2 sin
2

x
x

x

 
    =    
 
 

 

 
sin 0

2
x  = 

 
 

     
0, , 2 , ...

2
x π π⇒ =  

          0,2 , 4 ,...x π π=  
∴ The asymptotes are 0x =  and π= 2 ,x  for π∈[0, 2 ].x  
∴There is no y-intercept. 
 
x-intercept: 
 

  − = 
 

cot 1 0
2
x

 

     

  = 
 

cot 1
2
x

 
 ⇒ = 
 

tan 1
2
x

 

             

π π
=

5
, , ...

2 4 4
x

 

              

π π
=

5
, ,...

2 2
x  

∴ The x-intercept is
π

=
2

x , for π∈[0, 2 ].x  
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END OF SOLUTIONS BOOK 
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x

y

x = 0

x = 2π

(π/2, 0)

(π, -1)

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

π/2 π 3π/2 2π

˄
˄

˅ ˅

˄

˅  
 

3 marks 
 
 
Mark allocation  

• 1 mark for correctly labelling the x-intercept. 
• 1 mark for correctly labelling both of the vertical asymptotes. 
• 1 mark for the correct curve passing through ( ), 1π − . 

 

Tip 
Vertical asymptotes occur where the denominator of a rational function equals 
zero. 

 
 
 
 
 

END OF SOLUTIONS BOOK 


