

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2012

Trial Examination I

Instructions

Answer all questions. Do not use calculators.

A decimal approximation will not be accepted if an exact answer is required to a question.

In questions where more than one mark is available, appropriate working or explanation **must** be shown.

Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1

Let $y = \tan^{-1}(x) + \tan^{-1}(2x) + \tan^{-1}(3x)$.

a. Find the exact value of $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)$.

2 marks

b. Sketch the graph of $y = \tan^{-1}(x) + \tan^{-1}(2x) + \tan^{-1}(3x)$. Clearly draw and label the asymptotes. 2 marks

Given the relation $(x+2)^2 + 2(y-\sqrt{2})^2 = 4$. **a.** Find the maximal domain and range of the given relation.

2 marks

b. The relation is dilated from the *x*-axis by a factor of $\sqrt{2}$. Find the equation of the relation after the dilation. 2 marks

c. Find the exact area of the region enclosed by the relation in part b.

1 mark

Question 3 Let $z \in \{z : |z - 2i| \le 1\}$.

a. Shade clearly the region in the complex plane for $\{z : |z - 2i| \le 1\}$.

 	·			·		Tmla	.)	+	 +	 	· · · · · · · ·
							(
					3						
 										 	(
 	ļ								 	 	ļ
					2						
					1						
 									 	 	Pa(a)
 1					· 0						nezi
 								-		 i	÷
 -3	-	2	-	1		0		1	 2	 3	
 -3	-	2	-	1	-1	0		1	 2	 3	→
 -3	-	2	-	1	-1	0		1	 2	 3	→
 -3		2	-	1	-1	0		1	 2	 3	
 -3		2		1	-1	0		1	 2	 3	·····
 -3		2	-	1	-1	0		1	 2	 3	
 -3		2	-	1		0		1	 2	 3	· · · · · · · · · · · · · · · · · · ·
 -3	-	2	-	1	-1	0		1	 2	 3	· · · · · · · · · · · · · · · · · · ·
-3		2	-	1	-2	0		1	 2	 3	
-3	_	2	_	1	-2	0		1	 2	 3	••••

b. Find the maximum value of Arg(z).

Question 4 Solve $z^5 = \overline{z}$ for *z*.

3 marks

2 marks

Given 3-dimensional position vector $\tilde{r} = 2\tilde{i} - \tilde{j} + 3\tilde{k}$. **a.** Find a 3-dimensional vector perpendicular to $\tilde{r} = 2\tilde{i} - \tilde{j} + 3\tilde{k}$. 2 marks

b. Hence or otherwise, find a 3-dimensional *unit* vector perpendicular to $\tilde{r} = 2\tilde{i} - \tilde{j} + 3\tilde{k}$. 1 mark

c. Hence or otherwise, find the exact coordinates of a point which is 1 unit from $\tilde{r} = 2\tilde{i} - \tilde{j} + 3\tilde{k}$. 1 mark

Question 6

The position of a particle is given by $\tilde{r} = (\cos t)\tilde{i} - (2\sin t)\tilde{j} + 3\tilde{k}$. **a.** State the position of the centre of the motion. 1 mark

b. Show that the particle's acceleration always points towards the centre of the motion. 3 marks

Given
$$f(x) = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$
 where $-1 < x < 1$.
a. Find the exact value of $f'\left(\frac{\sqrt{2}}{2}\right)$.

2 marks

b. Find the exact area of the region bounded by the *x*-axis, y = f(x), x = -1 and x = 1. 2 marks

Given $\frac{dy}{dx} = xy$ where $-2 \le x \le 2$ and $0 \le y \le 4$.

a. Construct a slope field for the differential equation using 1 unit interval for both x and y. Draw each tangent line about 0.5 unit long. 3 marks

b. Sketch the solution curve to the differential equation $\frac{dy}{dx} = xy$ through (0,1). 1 mark

A 0.010 kg bead is free to slide along a weightless and frictionless thread fixed to the ceiling and wall as shown above. The bead is in equilibrium when it is 0.80 m below the ceiling.

Points P, B and Q are on the same vertical plane.

Calculate the tension (2 significant figures) in the thread.

3 marks

The velocity-time graph of a 0.50 kg particle for the first 15 seconds is shown below. Time is measured in seconds and distance in metres.

a. Find the magnitude of the change in momentum of the particle in the first 15 seconds. 1 mark

b. Find the magnitude of the resultant force on the particle at t = 5. 1 mark

c. Find the exact distance travelled by the particle in the first 15 seconds. 3 marks

End of Exam 1